A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling

计算机科学 贝叶斯概率 药物发现 人工智能 集合(抽象数据类型) 机器学习 生物信息学 血脑屏障 贝叶斯定理 随机森林 代表(政治) 数据集 数据挖掘 化学 生物信息学 中枢神经系统 神经科学 生物 政治学 生物化学 程序设计语言 法学 基因 政治
作者
Inês Filipa dos Santos Martins,Ana Luísa Teixeira,Luis Eustaquio Lopes Pinheiro,André O. Falcão
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:52 (6): 1686-1697 被引量:243
标识
DOI:10.1021/ci300124c
摘要

The human blood-brain barrier (BBB) is a membrane that protects the central nervous system (CNS) by restricting the passage of solutes. The development of any new drug must take into account its existence whether for designing new molecules that target components of the CNS or, on the other hand, to find new substances that should not penetrate the barrier. Several studies in the literature have attempted to predict BBB penetration, so far with limited success and few, if any, application to real world drug discovery and development programs. Part of the reason is due to the fact that only about 2% of small molecules can cross the BBB, and the available data sets are not representative of that reality, being generally biased with an over-representation of molecules that show an ability to permeate the BBB (BBB positives). To circumvent this limitation, the current study aims to devise and use a new approach based on Bayesian statistics, coupled with state-of-the-art machine learning methods to produce a robust model capable of being applied in real-world drug research scenarios. The data set used, gathered from the literature, totals 1970 curated molecules, one of the largest for similar studies. Random Forests and Support Vector Machines were tested in various configurations against several chemical descriptor set combinations. Models were tested in a 5-fold cross-validation process, and the best one tested over an independent validation set. The best fitted model produced an overall accuracy of 95%, with a mean square contingency coefficient (ϕ) of 0.74, and showing an overall capacity for predicting BBB positives of 83% and 96% for determining BBB negatives. This model was adapted into a Web based tool made available for the whole community at http://b3pp.lasige.di.fc.ul.pt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
聪明蛋完成签到,获得积分10
3秒前
3秒前
NN完成签到,获得积分10
3秒前
坚定的雁完成签到 ,获得积分10
4秒前
wanwan应助蜡笔小新的小白采纳,获得10
4秒前
Vincent1990完成签到,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
果子完成签到,获得积分10
7秒前
东东发布了新的文献求助10
7秒前
科研小狗发布了新的文献求助10
7秒前
smiling发布了新的文献求助10
7秒前
完美世界应助眼睛大安荷采纳,获得10
8秒前
11秒前
ELEGENCE完成签到,获得积分20
13秒前
T拐拐发布了新的文献求助10
16秒前
深情安青应助Green采纳,获得10
16秒前
东东发布了新的文献求助10
17秒前
18秒前
Owen应助醉生梦死采纳,获得10
18秒前
19秒前
20秒前
万能图书馆应助滴答采纳,获得10
20秒前
白派派主完成签到,获得积分10
21秒前
cc完成签到,获得积分10
21秒前
汉堡包应助难过的慕青采纳,获得10
21秒前
22秒前
Jsn完成签到,获得积分10
22秒前
lixiang发布了新的文献求助10
23秒前
赘婿应助ELEGENCE采纳,获得10
23秒前
顾矜应助独孤蚕采纳,获得10
24秒前
24秒前
橘橙色应助GT采纳,获得10
24秒前
Eason_C完成签到 ,获得积分10
24秒前
大模型应助GT采纳,获得10
24秒前
在水一方应助冷酷太清采纳,获得10
24秒前
科研通AI5应助白派派主采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425