A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling

计算机科学 贝叶斯概率 药物发现 人工智能 集合(抽象数据类型) 机器学习 生物信息学 血脑屏障 贝叶斯定理 随机森林 代表(政治) 数据集 数据挖掘 化学 生物信息学 中枢神经系统 神经科学 生物 政治学 生物化学 程序设计语言 法学 基因 政治
作者
Inês Filipa dos Santos Martins,Ana Luísa Teixeira,Luis Eustaquio Lopes Pinheiro,André O. Falcão
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:52 (6): 1686-1697 被引量:243
标识
DOI:10.1021/ci300124c
摘要

The human blood-brain barrier (BBB) is a membrane that protects the central nervous system (CNS) by restricting the passage of solutes. The development of any new drug must take into account its existence whether for designing new molecules that target components of the CNS or, on the other hand, to find new substances that should not penetrate the barrier. Several studies in the literature have attempted to predict BBB penetration, so far with limited success and few, if any, application to real world drug discovery and development programs. Part of the reason is due to the fact that only about 2% of small molecules can cross the BBB, and the available data sets are not representative of that reality, being generally biased with an over-representation of molecules that show an ability to permeate the BBB (BBB positives). To circumvent this limitation, the current study aims to devise and use a new approach based on Bayesian statistics, coupled with state-of-the-art machine learning methods to produce a robust model capable of being applied in real-world drug research scenarios. The data set used, gathered from the literature, totals 1970 curated molecules, one of the largest for similar studies. Random Forests and Support Vector Machines were tested in various configurations against several chemical descriptor set combinations. Models were tested in a 5-fold cross-validation process, and the best one tested over an independent validation set. The best fitted model produced an overall accuracy of 95%, with a mean square contingency coefficient (ϕ) of 0.74, and showing an overall capacity for predicting BBB positives of 83% and 96% for determining BBB negatives. This model was adapted into a Web based tool made available for the whole community at http://b3pp.lasige.di.fc.ul.pt.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zhouyin2采纳,获得10
1秒前
lilili应助加油采纳,获得10
1秒前
1秒前
咕咕咕发布了新的文献求助10
2秒前
研友_8QxayZ发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
zxy完成签到,获得积分10
2秒前
linjiebro完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
脑洞疼应助小狒狒采纳,获得10
4秒前
Fu完成签到,获得积分20
4秒前
dd发布了新的文献求助10
4秒前
5秒前
张沐金发布了新的文献求助10
5秒前
小二郎应助勤奋的刺猬采纳,获得10
5秒前
万浩发布了新的文献求助10
6秒前
Akim应助乐观小蕊采纳,获得10
6秒前
风清扬发布了新的文献求助10
7秒前
seall完成签到,获得积分10
7秒前
7秒前
欢喜曼岚完成签到 ,获得积分10
7秒前
www发布了新的文献求助10
7秒前
无花果应助zxy采纳,获得30
7秒前
7秒前
此晴可待发布了新的文献求助10
8秒前
8秒前
小羊耶啵完成签到,获得积分10
8秒前
神鸢完成签到,获得积分10
9秒前
Once发布了新的文献求助30
9秒前
???完成签到,获得积分10
9秒前
SciGPT应助小娥采纳,获得10
9秒前
qww发布了新的文献求助20
9秒前
剑鱼么么哒完成签到,获得积分10
9秒前
俊秀的又蓝完成签到 ,获得积分10
10秒前
xuleiman发布了新的文献求助10
10秒前
斯文败类应助大胆的向松采纳,获得10
10秒前
周小周发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721