A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling

计算机科学 贝叶斯概率 药物发现 人工智能 集合(抽象数据类型) 机器学习 生物信息学 血脑屏障 贝叶斯定理 随机森林 代表(政治) 数据集 数据挖掘 化学 生物信息学 中枢神经系统 神经科学 生物 生物化学 政治 基因 政治学 法学 程序设计语言
作者
Inês Filipa dos Santos Martins,Ana Luísa Teixeira,Luis Eustaquio Lopes Pinheiro,André O. Falcão
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:52 (6): 1686-1697 被引量:243
标识
DOI:10.1021/ci300124c
摘要

The human blood-brain barrier (BBB) is a membrane that protects the central nervous system (CNS) by restricting the passage of solutes. The development of any new drug must take into account its existence whether for designing new molecules that target components of the CNS or, on the other hand, to find new substances that should not penetrate the barrier. Several studies in the literature have attempted to predict BBB penetration, so far with limited success and few, if any, application to real world drug discovery and development programs. Part of the reason is due to the fact that only about 2% of small molecules can cross the BBB, and the available data sets are not representative of that reality, being generally biased with an over-representation of molecules that show an ability to permeate the BBB (BBB positives). To circumvent this limitation, the current study aims to devise and use a new approach based on Bayesian statistics, coupled with state-of-the-art machine learning methods to produce a robust model capable of being applied in real-world drug research scenarios. The data set used, gathered from the literature, totals 1970 curated molecules, one of the largest for similar studies. Random Forests and Support Vector Machines were tested in various configurations against several chemical descriptor set combinations. Models were tested in a 5-fold cross-validation process, and the best one tested over an independent validation set. The best fitted model produced an overall accuracy of 95%, with a mean square contingency coefficient (ϕ) of 0.74, and showing an overall capacity for predicting BBB positives of 83% and 96% for determining BBB negatives. This model was adapted into a Web based tool made available for the whole community at http://b3pp.lasige.di.fc.ul.pt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞿霞完成签到 ,获得积分10
刚刚
刚刚
avalanche应助ceng采纳,获得30
1秒前
Jasper应助adverse采纳,获得10
1秒前
1秒前
我是老大应助Passer采纳,获得10
1秒前
Chao发布了新的文献求助10
2秒前
2秒前
三哥完成签到,获得积分10
2秒前
科研通AI6应助干净冬莲采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
小马甲应助科研老炮采纳,获得10
5秒前
Owen应助周周周周周采纳,获得10
5秒前
顾矜应助什么都不懂采纳,获得10
5秒前
研友_VZG7GZ应助Chao采纳,获得10
7秒前
8秒前
UMA发布了新的文献求助10
9秒前
9秒前
11完成签到,获得积分10
9秒前
10秒前
10秒前
bjyx发布了新的文献求助10
10秒前
Yang发布了新的文献求助10
10秒前
丘比特应助哈哈哈哈哈哈采纳,获得10
11秒前
寻找论文完成签到,获得积分10
11秒前
0128lun发布了新的文献求助10
12秒前
12秒前
科研川完成签到 ,获得积分10
12秒前
13秒前
镓氧锌钇铀应助li采纳,获得20
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
时尚捕发布了新的文献求助10
15秒前
15秒前
16秒前
orixero应助arrebol采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914