A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling

计算机科学 贝叶斯概率 药物发现 人工智能 集合(抽象数据类型) 机器学习 生物信息学 血脑屏障 贝叶斯定理 随机森林 代表(政治) 数据集 数据挖掘 化学 生物信息学 中枢神经系统 神经科学 生物 政治学 生物化学 程序设计语言 法学 基因 政治
作者
Inês Filipa dos Santos Martins,Ana Luísa Teixeira,Luis Eustaquio Lopes Pinheiro,André O. Falcão
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:52 (6): 1686-1697 被引量:243
标识
DOI:10.1021/ci300124c
摘要

The human blood-brain barrier (BBB) is a membrane that protects the central nervous system (CNS) by restricting the passage of solutes. The development of any new drug must take into account its existence whether for designing new molecules that target components of the CNS or, on the other hand, to find new substances that should not penetrate the barrier. Several studies in the literature have attempted to predict BBB penetration, so far with limited success and few, if any, application to real world drug discovery and development programs. Part of the reason is due to the fact that only about 2% of small molecules can cross the BBB, and the available data sets are not representative of that reality, being generally biased with an over-representation of molecules that show an ability to permeate the BBB (BBB positives). To circumvent this limitation, the current study aims to devise and use a new approach based on Bayesian statistics, coupled with state-of-the-art machine learning methods to produce a robust model capable of being applied in real-world drug research scenarios. The data set used, gathered from the literature, totals 1970 curated molecules, one of the largest for similar studies. Random Forests and Support Vector Machines were tested in various configurations against several chemical descriptor set combinations. Models were tested in a 5-fold cross-validation process, and the best one tested over an independent validation set. The best fitted model produced an overall accuracy of 95%, with a mean square contingency coefficient (ϕ) of 0.74, and showing an overall capacity for predicting BBB positives of 83% and 96% for determining BBB negatives. This model was adapted into a Web based tool made available for the whole community at http://b3pp.lasige.di.fc.ul.pt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大模型应助奔奔采纳,获得10
1秒前
2秒前
2秒前
Owen应助西哈哈采纳,获得10
2秒前
Jessie完成签到 ,获得积分10
2秒前
烟花应助孔雨珍采纳,获得10
3秒前
王小志发布了新的文献求助10
3秒前
科研通AI5应助SCI采纳,获得10
3秒前
net完成签到 ,获得积分10
3秒前
Sally完成签到,获得积分10
4秒前
飘逸蘑菇完成签到 ,获得积分10
4秒前
5秒前
小二郎应助tao采纳,获得10
5秒前
陈丫发布了新的文献求助10
5秒前
5秒前
5秒前
小二郎应助凉风有信9527采纳,获得10
6秒前
LEMON发布了新的文献求助20
7秒前
炜大的我完成签到,获得积分10
7秒前
haimianbaobao发布了新的文献求助10
7秒前
传奇3应助研友_nPoXoL采纳,获得10
7秒前
lpp完成签到,获得积分10
7秒前
7秒前
ww发布了新的文献求助10
7秒前
22发布了新的文献求助10
8秒前
zhui发布了新的文献求助10
8秒前
9秒前
Jenny应助哈哈哈哈采纳,获得10
10秒前
笨笨芯应助Miracle采纳,获得10
10秒前
研友_LJGpan完成签到,获得积分10
10秒前
xiaozhenA完成签到,获得积分10
10秒前
junzilan发布了新的文献求助10
10秒前
云澈发布了新的文献求助10
10秒前
Hello paper发布了新的文献求助20
11秒前
a111完成签到,获得积分10
11秒前
乐乐应助zzznznnn采纳,获得10
11秒前
哈哈完成签到,获得积分20
12秒前
阳光衣完成签到,获得积分0
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794