亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling

计算机科学 贝叶斯概率 药物发现 人工智能 集合(抽象数据类型) 机器学习 生物信息学 血脑屏障 贝叶斯定理 随机森林 代表(政治) 数据集 数据挖掘 化学 生物信息学 中枢神经系统 神经科学 生物 生物化学 政治 基因 政治学 法学 程序设计语言
作者
Inês Filipa dos Santos Martins,Ana Luísa Teixeira,Luis Eustaquio Lopes Pinheiro,André O. Falcão
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:52 (6): 1686-1697 被引量:237
标识
DOI:10.1021/ci300124c
摘要

The human blood-brain barrier (BBB) is a membrane that protects the central nervous system (CNS) by restricting the passage of solutes. The development of any new drug must take into account its existence whether for designing new molecules that target components of the CNS or, on the other hand, to find new substances that should not penetrate the barrier. Several studies in the literature have attempted to predict BBB penetration, so far with limited success and few, if any, application to real world drug discovery and development programs. Part of the reason is due to the fact that only about 2% of small molecules can cross the BBB, and the available data sets are not representative of that reality, being generally biased with an over-representation of molecules that show an ability to permeate the BBB (BBB positives). To circumvent this limitation, the current study aims to devise and use a new approach based on Bayesian statistics, coupled with state-of-the-art machine learning methods to produce a robust model capable of being applied in real-world drug research scenarios. The data set used, gathered from the literature, totals 1970 curated molecules, one of the largest for similar studies. Random Forests and Support Vector Machines were tested in various configurations against several chemical descriptor set combinations. Models were tested in a 5-fold cross-validation process, and the best one tested over an independent validation set. The best fitted model produced an overall accuracy of 95%, with a mean square contingency coefficient (ϕ) of 0.74, and showing an overall capacity for predicting BBB positives of 83% and 96% for determining BBB negatives. This model was adapted into a Web based tool made available for the whole community at http://b3pp.lasige.di.fc.ul.pt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成熟稳重痴情完成签到,获得积分10
刚刚
qqq完成签到 ,获得积分10
1秒前
1秒前
永毅完成签到 ,获得积分10
4秒前
希望天下0贩的0应助123采纳,获得10
4秒前
6秒前
pp‘s完成签到 ,获得积分10
7秒前
Ava应助李月月采纳,获得10
7秒前
天天发布了新的文献求助10
8秒前
13秒前
桐桐应助纯洁采纳,获得30
14秒前
17秒前
李月月完成签到,获得积分10
17秒前
silencegreen5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
研友_8KKkb8应助科研通管家采纳,获得20
20秒前
Orange应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
ertredffg发布了新的文献求助10
22秒前
25秒前
123发布了新的文献求助10
30秒前
ertredffg完成签到,获得积分10
31秒前
传奇3应助123采纳,获得10
41秒前
45秒前
酷波er应助QI采纳,获得10
48秒前
54秒前
夏秋完成签到 ,获得积分10
56秒前
58秒前
ysssp发布了新的文献求助10
58秒前
Zer完成签到,获得积分10
59秒前
乐乐应助QI采纳,获得10
1分钟前
1分钟前
执着听兰发布了新的文献求助30
1分钟前
1分钟前
纯洁发布了新的文献求助30
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268584
求助须知:如何正确求助?哪些是违规求助? 2908068
关于积分的说明 8344359
捐赠科研通 2578470
什么是DOI,文献DOI怎么找? 1402013
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634393