Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks

人工智能 计算机科学 卷积神经网络 深度学习 假阳性悖论 学习迁移 模式识别(心理学) 乳腺超声检查 排名(信息检索) 超声波 人工神经网络 机器学习 乳腺摄影术 放射科 医学 乳腺癌 内科学 癌症
作者
Moi Hoon Yap,Gérard Pons,Robert Martí,Sergi Ganau,Melcior Sentís,Reyer Zwiggelaar,Adrian K. Davison,Robert Martí
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 1218-1226 被引量:819
标识
DOI:10.1109/jbhi.2017.2731873
摘要

Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rookie_b0完成签到,获得积分10
刚刚
刚刚
kongzhounandu应助xiyang采纳,获得20
1秒前
1秒前
贪玩元晴发布了新的文献求助10
1秒前
1秒前
浮游应助狂野尔烟采纳,获得10
1秒前
1秒前
詹梓聪完成签到,获得积分20
2秒前
ddd发布了新的文献求助10
2秒前
chenyy发布了新的文献求助10
2秒前
完美世界应助早123采纳,获得10
2秒前
上官若男应助星海采纳,获得10
2秒前
3秒前
3秒前
[刘小婷]发布了新的文献求助10
3秒前
lCM发布了新的文献求助10
3秒前
wq关注了科研通微信公众号
3秒前
思源应助shiliang采纳,获得10
3秒前
潇洒闭月发布了新的文献求助10
4秒前
纳斯达克发布了新的文献求助10
4秒前
4秒前
4秒前
Wei_Li完成签到,获得积分20
4秒前
4秒前
hhxyhjh完成签到,获得积分10
4秒前
SciGPT应助wtt采纳,获得10
4秒前
蔡demon完成签到 ,获得积分10
4秒前
一颗杨梅完成签到,获得积分10
5秒前
5秒前
Trista0036完成签到,获得积分10
5秒前
涨知识发布了新的文献求助10
5秒前
orixero应助wb采纳,获得10
6秒前
姜同心完成签到,获得积分20
6秒前
柠檬没我萌完成签到 ,获得积分10
6秒前
6秒前
善学以致用应助乔垣结衣采纳,获得10
6秒前
6秒前
樊念烟发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794