Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助zuoyou采纳,获得10
3秒前
搞怪人杰完成签到,获得积分10
4秒前
深情安青应助wangayting采纳,获得10
4秒前
4秒前
4秒前
小二郎应助烂漫的幻梅采纳,获得10
4秒前
皓月发布了新的文献求助10
7秒前
7秒前
大个应助小瓶子采纳,获得10
8秒前
冷傲的如柏完成签到,获得积分10
8秒前
小马甲应助魔域采纳,获得10
8秒前
ppprotein完成签到,获得积分10
8秒前
9秒前
wbhou完成签到 ,获得积分10
10秒前
小葵发布了新的文献求助10
10秒前
ycp完成签到,获得积分10
10秒前
闵凝竹完成签到 ,获得积分10
12秒前
14秒前
123完成签到,获得积分10
14秒前
幸福的千琴完成签到,获得积分10
14秒前
yecheng完成签到,获得积分10
14秒前
Bethune完成签到 ,获得积分10
17秒前
司空博涛发布了新的文献求助10
17秒前
19秒前
杨嘉琪完成签到 ,获得积分20
21秒前
22秒前
24秒前
61完成签到,获得积分10
24秒前
江江完成签到,获得积分10
24秒前
英俊的铭应助阳光又亦采纳,获得10
25秒前
25秒前
26秒前
Z2完成签到 ,获得积分10
28秒前
28秒前
zhangqi发布了新的文献求助30
29秒前
科研通AI2S应助SCULGJ采纳,获得10
31秒前
zuoyou发布了新的文献求助10
31秒前
瘦瘦冬寒发布了新的文献求助30
34秒前
童梦完成签到 ,获得积分10
34秒前
Akim应助drizzling采纳,获得10
35秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187435
求助须知:如何正确求助?哪些是违规求助? 2837327
关于积分的说明 8014426
捐赠科研通 2499950
什么是DOI,文献DOI怎么找? 1334671
科研通“疑难数据库(出版商)”最低求助积分说明 637208
邀请新用户注册赠送积分活动 605182