Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小点点发布了新的文献求助10
1秒前
tang完成签到,获得积分10
1秒前
may发布了新的文献求助10
2秒前
Ufoab完成签到,获得积分10
3秒前
xmy发布了新的文献求助20
3秒前
张子子发布了新的文献求助10
4秒前
乐乐应助读心理学导致的采纳,获得30
5秒前
5秒前
共享精神应助pcr采纳,获得10
7秒前
糊涂的不尤完成签到 ,获得积分20
9秒前
QY关闭了QY文献求助
9秒前
10秒前
zzzzz完成签到,获得积分10
10秒前
xxx发布了新的文献求助10
12秒前
思源应助潍澤采纳,获得10
12秒前
明亮无颜发布了新的文献求助10
13秒前
爱科研168发布了新的文献求助10
15秒前
兰Cym完成签到,获得积分10
16秒前
lewisll发布了新的文献求助30
17秒前
18秒前
cathy-w完成签到,获得积分10
18秒前
学术灰姑娘应助ZFG采纳,获得10
18秒前
20秒前
默默问芙关注了科研通微信公众号
20秒前
22秒前
111发布了新的文献求助10
22秒前
莉莉发布了新的文献求助10
25秒前
善学以致用应助少年采纳,获得10
26秒前
27秒前
YY完成签到 ,获得积分10
27秒前
木子发布了新的文献求助10
27秒前
catch完成签到,获得积分10
28秒前
共享精神应助笨笨采纳,获得20
28秒前
30秒前
科研通AI2S应助黄婷采纳,获得10
30秒前
31秒前
穆振家完成签到,获得积分10
31秒前
yui发布了新的文献求助20
32秒前
pcr发布了新的文献求助10
35秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186351
求助须知:如何正确求助?哪些是违规求助? 2836623
关于积分的说明 8010396
捐赠科研通 2498987
什么是DOI,文献DOI怎么找? 1334049
科研通“疑难数据库(出版商)”最低求助积分说明 637003
邀请新用户注册赠送积分活动 604909