Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助天朗采纳,获得30
1秒前
2秒前
2秒前
Stella完成签到,获得积分10
3秒前
瀚。完成签到,获得积分10
3秒前
AU完成签到,获得积分10
4秒前
科目三应助nihaoooo采纳,获得10
4秒前
风中的向卉完成签到 ,获得积分10
5秒前
研友_LX7478完成签到,获得积分10
5秒前
许一发布了新的文献求助10
6秒前
杳鸢应助Stella采纳,获得30
7秒前
ding应助zhang采纳,获得10
7秒前
荒糖完成签到,获得积分10
8秒前
kiki完成签到,获得积分10
9秒前
10秒前
11秒前
冒险王龘完成签到,获得积分10
11秒前
白桦完成签到,获得积分10
12秒前
xzz完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
文艺白柏完成签到 ,获得积分10
13秒前
狂野萤应助阿哈采纳,获得20
13秒前
14秒前
15秒前
寒来暑往应助草莓采纳,获得10
15秒前
Lucas应助像风一样采纳,获得10
16秒前
嘻嘻嘻呀发布了新的文献求助10
16秒前
17秒前
深情安青应助你好采纳,获得10
17秒前
Star发布了新的文献求助30
18秒前
慈祥的鸣凤完成签到 ,获得积分10
18秒前
迷人寻冬完成签到,获得积分10
18秒前
19秒前
专注纹发布了新的文献求助10
20秒前
aili关注了科研通微信公众号
20秒前
bkagyin应助可爱秋柳采纳,获得10
20秒前
追寻绮玉完成签到,获得积分10
21秒前
忧伤的冰薇完成签到 ,获得积分10
21秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187269
求助须知:如何正确求助?哪些是违规求助? 2837276
关于积分的说明 8013988
捐赠科研通 2499791
什么是DOI,文献DOI怎么找? 1334620
科研通“疑难数据库(出版商)”最低求助积分说明 637194
邀请新用户注册赠送积分活动 605171