Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简化为发布了新的文献求助10
1秒前
元夕阑珊完成签到,获得积分10
1秒前
1秒前
C2发布了新的文献求助10
1秒前
雾黎颖完成签到,获得积分10
1秒前
Leisure_Lee完成签到,获得积分10
2秒前
2秒前
charles发布了新的文献求助10
2秒前
蜡笔小新发布了新的文献求助10
2秒前
Jello发布了新的文献求助10
3秒前
浮光完成签到,获得积分20
3秒前
无名之辈发布了新的文献求助10
4秒前
123456完成签到,获得积分10
4秒前
传奇3应助Kvolu29采纳,获得10
5秒前
SUMMER发布了新的文献求助20
6秒前
8秒前
8秒前
accept完成签到,获得积分10
9秒前
li发布了新的文献求助10
11秒前
烟花应助傲娇的毛毛虫采纳,获得10
11秒前
wyvern114完成签到,获得积分10
13秒前
13秒前
白鹭立雪发布了新的文献求助10
13秒前
顽固分子发布了新的文献求助10
14秒前
131949发布了新的文献求助10
15秒前
深情安青应助鲤鱼鸽子采纳,获得30
16秒前
蓝冰发布了新的文献求助10
18秒前
外向的采珊完成签到,获得积分10
19秒前
不倦应助C2采纳,获得20
19秒前
舒服的文完成签到 ,获得积分10
19秒前
大力的新蕾完成签到,获得积分10
20秒前
小二郎应助JoyGloria采纳,获得10
25秒前
131949完成签到,获得积分20
25秒前
Artorias发布了新的文献求助10
25秒前
25秒前
26秒前
不安毛豆应助cultromics采纳,获得10
26秒前
26秒前
科研通AI2S应助cc采纳,获得10
27秒前
27秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3185487
求助须知:如何正确求助?哪些是违规求助? 2835818
关于积分的说明 8006526
捐赠科研通 2498268
什么是DOI,文献DOI怎么找? 1333365
科研通“疑难数据库(出版商)”最低求助积分说明 636828
邀请新用户注册赠送积分活动 604465