Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
迷你的雅霜完成签到,获得积分10
2秒前
lxt发布了新的文献求助10
2秒前
善人发布了新的文献求助10
5秒前
耍酷蛋挞发布了新的文献求助10
5秒前
6秒前
meym发布了新的文献求助30
6秒前
张张发布了新的文献求助10
7秒前
7秒前
不配.应助Fancy采纳,获得20
7秒前
852应助紫杉罗罗采纳,获得10
7秒前
天天快乐应助QinQin采纳,获得10
8秒前
ERICLEE82完成签到 ,获得积分10
9秒前
打打应助汎影采纳,获得10
9秒前
张丹111完成签到,获得积分10
9秒前
彭于晏应助wpc2o1o采纳,获得10
10秒前
热爱科研的人完成签到,获得积分10
11秒前
xu55发布了新的文献求助10
11秒前
科研通AI2S应助张三采纳,获得10
11秒前
独特星月发布了新的文献求助10
11秒前
天台风好大完成签到 ,获得积分10
11秒前
华仔应助咖飞采纳,获得10
12秒前
12秒前
小只完成签到,获得积分10
12秒前
秋风暖暖应助青岚采纳,获得10
12秒前
月落杉松晚完成签到,获得积分10
12秒前
12秒前
我心飞扬发布了新的文献求助10
13秒前
上上谦完成签到,获得积分10
15秒前
科目三应助jasy采纳,获得10
15秒前
起名字好难完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
优雅酸奶发布了新的文献求助10
17秒前
djdh发布了新的文献求助10
17秒前
17秒前
风趣采白发布了新的文献求助10
18秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3181459
求助须知:如何正确求助?哪些是违规求助? 2831701
关于积分的说明 7986194
捐赠科研通 2493698
什么是DOI,文献DOI怎么找? 1330255
科研通“疑难数据库(出版商)”最低求助积分说明 635954
版权声明 602955