已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助安详宛筠采纳,获得10
3秒前
科研通AI2S应助小橘子采纳,获得10
5秒前
长于宽完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
李李发布了新的文献求助10
12秒前
13秒前
雪生在无人荒野完成签到,获得积分10
13秒前
哈喽发布了新的文献求助10
14秒前
从容的听枫完成签到,获得积分20
14秒前
16秒前
shadow发布了新的文献求助10
20秒前
小橘子发布了新的文献求助10
21秒前
852应助Henry采纳,获得10
23秒前
25秒前
26秒前
26秒前
李李完成签到 ,获得积分20
26秒前
小徐发布了新的文献求助10
32秒前
陈红安发布了新的文献求助10
32秒前
Hazel完成签到,获得积分10
35秒前
xx1234567890完成签到,获得积分10
36秒前
40秒前
善学以致用应助小徐采纳,获得10
40秒前
yaoyao发布了新的文献求助10
40秒前
小橘子完成签到,获得积分10
43秒前
Henry发布了新的文献求助10
46秒前
46秒前
劳模完成签到,获得积分10
47秒前
51秒前
Tokgo完成签到,获得积分10
51秒前
小蘑菇应助yaoyao采纳,获得10
52秒前
53秒前
clay_park完成签到,获得积分10
55秒前
感动白开水完成签到,获得积分10
55秒前
JamesPei应助猴子没有壳采纳,获得10
1分钟前
螃蟹One完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助李李采纳,获得10
1分钟前
领导范儿应助淡水痕采纳,获得10
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200608
求助须知:如何正确求助?哪些是违规求助? 2850426
关于积分的说明 8071977
捐赠科研通 2514157
什么是DOI,文献DOI怎么找? 1346908
科研通“疑难数据库(出版商)”最低求助积分说明 640281
邀请新用户注册赠送积分活动 610407