Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇发布了新的文献求助10
刚刚
Lang777完成签到,获得积分10
刚刚
1秒前
ZRX-1111发布了新的文献求助10
1秒前
馋馋完成签到,获得积分10
2秒前
3秒前
zxc完成签到,获得积分10
3秒前
lww完成签到 ,获得积分10
3秒前
丘比特应助沉默的无施采纳,获得10
4秒前
lotus777完成签到 ,获得积分10
5秒前
wzhang发布了新的文献求助10
5秒前
小蘑菇应助melenda采纳,获得10
6秒前
黑苹果发布了新的文献求助10
8秒前
涵涵可以完成签到,获得积分10
8秒前
阿腾发布了新的文献求助10
8秒前
10秒前
dengqin完成签到 ,获得积分10
10秒前
cookie完成签到,获得积分10
13秒前
wawaaaah完成签到 ,获得积分10
13秒前
14秒前
14秒前
科研通AI2S应助易大人采纳,获得10
15秒前
不配.应助戴先森采纳,获得10
16秒前
Serein完成签到,获得积分10
16秒前
16秒前
ZRX-1111完成签到,获得积分10
17秒前
卿云给卿云的求助进行了留言
17秒前
17秒前
h41692011完成签到 ,获得积分10
18秒前
19秒前
melenda发布了新的文献求助10
19秒前
20秒前
直率的画笔完成签到,获得积分10
21秒前
加百莉发布了新的文献求助10
21秒前
现代青枫应助欧皇采纳,获得10
22秒前
爱吃黄豆完成签到,获得积分10
22秒前
风犬少年完成签到,获得积分10
22秒前
fdwang完成签到 ,获得积分10
23秒前
羊青丝发布了新的文献求助10
24秒前
guoguo完成签到,获得积分10
25秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184481
求助须知:如何正确求助?哪些是违规求助? 2834823
关于积分的说明 8001452
捐赠科研通 2497193
什么是DOI,文献DOI怎么找? 1332689
科研通“疑难数据库(出版商)”最低求助积分说明 636663
邀请新用户注册赠送积分活动 603998