Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助zyq采纳,获得10
刚刚
乔十一发布了新的文献求助10
刚刚
2秒前
坚强的隶发布了新的文献求助10
2秒前
刘源发布了新的文献求助10
4秒前
传奇3应助互助遵法尚德采纳,获得10
4秒前
5秒前
5秒前
今后应助唠叨的以柳采纳,获得10
6秒前
Ava应助bofu采纳,获得30
7秒前
rosee完成签到,获得积分10
7秒前
赘婿应助坚强的隶采纳,获得10
11秒前
疯狂的依霜完成签到,获得积分20
12秒前
科研通AI2S应助酷炫的背包采纳,获得10
15秒前
慕青应助bofu采纳,获得10
15秒前
娜娜子欧发布了新的文献求助10
15秒前
薰硝壤应助东流采纳,获得10
16秒前
小二郎应助细心的寄容采纳,获得30
19秒前
上官若男应助活泼的问夏采纳,获得10
19秒前
FashionBoy应助马tttt采纳,获得10
21秒前
噬菌体发布了新的文献求助10
21秒前
朴实凝阳发布了新的文献求助10
24秒前
皇帝的床帘应助bofu采纳,获得30
24秒前
25秒前
26秒前
莫西莫西发布了新的文献求助10
28秒前
28秒前
29秒前
Qi半仙完成签到,获得积分10
30秒前
不配.应助lessormoto采纳,获得20
30秒前
30秒前
32秒前
32秒前
球球完成签到,获得积分10
32秒前
852应助peterlzb1234567采纳,获得10
32秒前
小蘑菇应助踏实滑板采纳,获得10
32秒前
小二郎应助bofu采纳,获得10
33秒前
34秒前
球球发布了新的文献求助10
34秒前
35秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3182256
求助须知:如何正确求助?哪些是违规求助? 2832617
关于积分的说明 7990044
捐赠科研通 2494633
什么是DOI,文献DOI怎么找? 1330907
科研通“疑难数据库(出版商)”最低求助积分说明 636179
邀请新用户注册赠送积分活动 603090