Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北辰完成签到,获得积分10
2秒前
猴子先生完成签到 ,获得积分10
2秒前
DBY完成签到,获得积分10
8秒前
9秒前
9秒前
jzmupyj完成签到,获得积分10
9秒前
Song完成签到,获得积分10
10秒前
怕孤独的可乐完成签到 ,获得积分10
10秒前
无限安蕾发布了新的文献求助10
10秒前
桃子水母发布了新的文献求助30
11秒前
11秒前
12秒前
Mellow发布了新的文献求助10
13秒前
年轻的怀柔完成签到,获得积分10
14秒前
14秒前
Scarlett发布了新的文献求助10
14秒前
北风完成签到,获得积分10
15秒前
YAE发布了新的文献求助10
15秒前
mmmm发布了新的文献求助10
16秒前
Gustavo发布了新的文献求助10
16秒前
nini发布了新的文献求助10
16秒前
凯特完成签到,获得积分10
17秒前
汉堡包应助Stuart采纳,获得10
18秒前
田様应助Nature采纳,获得10
19秒前
wfy完成签到,获得积分10
19秒前
jzmulyl完成签到,获得积分10
20秒前
思源应助石语芙采纳,获得10
21秒前
HY完成签到,获得积分20
21秒前
Bamboo完成签到 ,获得积分10
22秒前
Gustavo完成签到,获得积分10
23秒前
24秒前
24秒前
所所应助11111采纳,获得10
24秒前
Nightfall完成签到,获得积分20
25秒前
25秒前
劲秉应助charles采纳,获得10
26秒前
Dinse发布了新的文献求助10
27秒前
可爱的函函应助桃了桃了采纳,获得10
27秒前
小小完成签到 ,获得积分10
28秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187972
求助须知:如何正确求助?哪些是违规求助? 2837568
关于积分的说明 8016224
捐赠科研通 2500270
什么是DOI,文献DOI怎么找? 1334868
科研通“疑难数据库(出版商)”最低求助积分说明 637310
邀请新用户注册赠送积分活动 605347