已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Customer online shopping experience data analytics

采购 竞争对手分析 市场细分 业务 顾客终身价值 营销 客户情报 消费者行为 客户保留 计算机科学 服务(商务) 服务质量
作者
Eugene Y. Wong,Wei Yan
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
卷期号:46 (4): 406-420 被引量:44
标识
DOI:10.1108/ijrdm-06-2017-0130
摘要

Purpose The purpose of this paper is to develop a customer online behaviour analysis tool, segment high-value customers, analyse their online purchasing behaviour and predict their next purchases from an online air travel corporation. Design/methodology/approach An operations review of the customer online shopping process of an online travel agency (OTA) is conducted. A customer online shopping behaviour analysis tool is developed. The tool integrates competitors’ pricing data mining, customer segmentation and predictive analysis. The impacts of competitors’ price changes on customer purchasing decisions regarding the OTA’s products are evaluated. The integrated model for mining pricing data, identifying potential customers and predicting their next purchases helps the OTA recommend tailored product packages to its individual customers with reference to their travel patterns. Findings In the customer segmentation analysis, 110,840 customers are identified and segmented based on their purchasing behaviour. The relationship between the purchasing behaviour in an OTA and the price changes of different OTAs are analysed. There is a significant relationship between the flight duration time and the purchase lead time. The next travel destinations of segmented high-value customers are predicted with reference to their travel patterns and the significance of the relationships between destination pairs. Practical implications The developed model contributes to pricing evaluation, customer segmentation and package customization for online customers. Originality/value This study provides novel method and insights into customer behaviour towards OTAs through an integrated model of customer segmentation, customer behaviour and prediction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁的寻冬完成签到,获得积分10
1秒前
现代青枫应助九九采纳,获得10
2秒前
阿文完成签到,获得积分10
2秒前
安详伯云应助曾真真幸运采纳,获得10
3秒前
4秒前
5秒前
朴素的不弱完成签到 ,获得积分10
5秒前
wanci应助Windfall采纳,获得10
6秒前
6秒前
Debiao发布了新的文献求助10
11秒前
敏感的百招完成签到,获得积分10
13秒前
14秒前
15秒前
lxz完成签到,获得积分10
17秒前
19秒前
juqiu完成签到 ,获得积分10
20秒前
xqq发布了新的文献求助10
20秒前
Kristine完成签到 ,获得积分10
22秒前
23秒前
Dr.Liujun发布了新的文献求助10
25秒前
25秒前
冷酷的魂幽完成签到,获得积分10
27秒前
sjyu1985发布了新的文献求助10
28秒前
浅尝离白应助科研通管家采纳,获得30
28秒前
小二郎应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
浅尝离白应助科研通管家采纳,获得30
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
Debiao完成签到,获得积分10
30秒前
33秒前
35秒前
彭于晏应助lxz采纳,获得10
35秒前
小半关注了科研通微信公众号
37秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3183462
求助须知:如何正确求助?哪些是违规求助? 2833489
关于积分的说明 7994628
捐赠科研通 2495777
什么是DOI,文献DOI怎么找? 1331660
科研通“疑难数据库(出版商)”最低求助积分说明 636387
邀请新用户注册赠送积分活动 603536