亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An application of a cardinality-constrained multiple benchmark tracking error model on a plant enterprise selection problem

数学优化 基数(数据建模) 计算机科学 多元化(营销策略) 跟踪误差 波动性(金融) 启发式 运筹学 计量经济学 经济 数学 业务 数据挖掘 人工智能 营销 控制(管理)
作者
Qiuzhuo Ma,Krishna P. Paudel,Liting Gu,Xiaowei Wen
出处
期刊:European Review of Agricultural Economics [Oxford University Press]
卷期号:45 (5): 677-721
标识
DOI:10.1093/erae/jby004
摘要

Yield and return of plants grown in a region are generally closely related. Agricultural scientists are less likely to recommend a single-plant enterprise for a region because of risk and return concerns. From a risk/return perspective, a plant enterprise selection problem can be considered as a portfolio optimisation problem. We use a multiple benchmark tracking error (MBTE) model to select an optimal plant enterprise combination under two goals. A cardinality constraint (CC) is used to efficiently balance multiple objectives and limit over-diversification in a region. We use Chinese national and province level datasets from multiple plant enterprises over 25 years to identify the best plant enterprise combination with two objectives under consideration: return maximisation and risk minimisation. A simulated case using discrete programming is applied in order to analyse a farmer's choice of specific plant enterprise and the transaction cost during rotation. In the continuous problem, the MBTE model is found to be efficient in choosing plant enterprises with high returns and low risk. The inclusion of a CC in the MBTE model efficiently reduces the plant enterprise number and volatility while creating smaller tracking errors than the MBTE model alone in an out-of-sample test. In the discrete problem, a CC can be used to search for the optimal number of plant enterprises to obtain high returns and low risk. The study and methods used can be helpful in choosing an optimal enterprise combination with multiple objectives when there are over-diversification concerns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
37秒前
123321完成签到 ,获得积分10
59秒前
隐形曼青应助可靠的寒风采纳,获得10
1分钟前
陆上飞完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
树妖三三完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
3分钟前
可可爱爱毛毛完成签到 ,获得积分10
3分钟前
休斯顿完成签到,获得积分10
3分钟前
3分钟前
独特的香魔完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
luluzhu发布了新的文献求助10
4分钟前
luluzhu完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Panther完成签到,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
6分钟前
研友_VZG7GZ应助Mannone采纳,获得10
6分钟前
华理附院孙文博完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Mannone完成签到,获得积分10
6分钟前
Mannone发布了新的文献求助10
6分钟前
燕晓啸完成签到 ,获得积分0
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
今后应助mellow采纳,获得10
7分钟前
田様应助可靠的寒风采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105124
求助须知:如何正确求助?哪些是违规求助? 4315104
关于积分的说明 13444036
捐赠科研通 4143627
什么是DOI,文献DOI怎么找? 2270533
邀请新用户注册赠送积分活动 1273047
关于科研通互助平台的介绍 1210145