An application of a cardinality-constrained multiple benchmark tracking error model on a plant enterprise selection problem

数学优化 基数(数据建模) 计算机科学 多元化(营销策略) 跟踪误差 波动性(金融) 启发式 运筹学 计量经济学 经济 数学 业务 数据挖掘 营销 人工智能 控制(管理)
作者
Qiuzhuo Ma,Krishna P. Paudel,Liting Gu,Xiaowei Wen
出处
期刊:European Review of Agricultural Economics [Oxford University Press]
卷期号:45 (5): 677-721
标识
DOI:10.1093/erae/jby004
摘要

Yield and return of plants grown in a region are generally closely related. Agricultural scientists are less likely to recommend a single-plant enterprise for a region because of risk and return concerns. From a risk/return perspective, a plant enterprise selection problem can be considered as a portfolio optimisation problem. We use a multiple benchmark tracking error (MBTE) model to select an optimal plant enterprise combination under two goals. A cardinality constraint (CC) is used to efficiently balance multiple objectives and limit over-diversification in a region. We use Chinese national and province level datasets from multiple plant enterprises over 25 years to identify the best plant enterprise combination with two objectives under consideration: return maximisation and risk minimisation. A simulated case using discrete programming is applied in order to analyse a farmer's choice of specific plant enterprise and the transaction cost during rotation. In the continuous problem, the MBTE model is found to be efficient in choosing plant enterprises with high returns and low risk. The inclusion of a CC in the MBTE model efficiently reduces the plant enterprise number and volatility while creating smaller tracking errors than the MBTE model alone in an out-of-sample test. In the discrete problem, a CC can be used to search for the optimal number of plant enterprises to obtain high returns and low risk. The study and methods used can be helpful in choosing an optimal enterprise combination with multiple objectives when there are over-diversification concerns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
韩子云发布了新的文献求助10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
xiaohe应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
勤奋勒完成签到,获得积分20
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
852应助PROPELLER采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
lc123发布了新的文献求助10
刚刚
niNe3YUE应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
哈哈哈完成签到,获得积分20
1秒前
脑洞疼应助暴躁的梦露采纳,获得10
1秒前
2秒前
3秒前
乐乐应助ddddd采纳,获得10
3秒前
传奇3应助完犊子采纳,获得10
3秒前
络噬元兽发布了新的文献求助10
3秒前
靓丽寒梦完成签到,获得积分10
4秒前
隐形的小鸽子完成签到 ,获得积分10
4秒前
路人甲路人乙完成签到 ,获得积分10
4秒前
4秒前
5秒前
深情安青应助tl采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
哎呦喂发布了新的文献求助10
6秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582496
求助须知:如何正确求助?哪些是违规求助? 4666557
关于积分的说明 14763364
捐赠科研通 4608754
什么是DOI,文献DOI怎么找? 2528816
邀请新用户注册赠送积分活动 1498082
关于科研通互助平台的介绍 1466764