Mutational heterogeneity in cancer and the search for new cancer-associated genes

生物 遗传学 基因组 癌症 外显子组 外显子组测序 突变 基因 DNA测序 人类基因组 癌症基因组测序 计算生物学
作者
Michael S. Lawrence,Petar Stojanov,Paz Polak,Gregory V. Kryukov,Kristian Cibulskis,Andrey Sivachenko,Scott L. Carter,Chip Stewart,Craig H. Mermel,Steven A. Roberts,Adam Kieżun,Peter S. Hammerman,Aaron McKenna,Yotam Drier,Lihua Zou,Alex H. Ramos,Trevor J. Pugh,Nicolas Stransky,Elena Helman,Jaegil Kim,Carrie Sougnez,Lauren Ambrogio,Elizabeth Nickerson,Erica Shefler,Maria L. Cortés,Daniel Auclair,Gordon Saksena,Douglas Voet,Michael S. Noble,Daniel DiCara,Pei Lin,Lee Lichtenstein,David I. Heiman,Timothy R. Fennell,Marcin Imieliński,Bryan Hernandez,Eran Hodis,Sylvan C. Baca,Austin Dulak,Jens G. Lohr,Dan A. Landau,Catherine J. Wu,Jorge Meléndez-Zajgla,Alfredo Hidalgo‐Miranda,Amnon Koren,Steven A. McCarroll,Jaume Mora,Ryan S. Lee,Brian D. Crompton,Robert C. Onofrio,Melissa Parkin,Wendy Winckler,Kristin Ardlie,Stacey Gabriel,Charles W.M. Roberts,Jaclyn A. Biegel,Kimberly Stegmaier,Adam J. Bass,Levi A. Garraway,Matthew Meyerson,Todd R. Golub,Dmitry A. Gordenin,Shamil Sunyaev,Sı́lvia Beà,Gad Getz
出处
期刊:Nature [Nature Portfolio]
卷期号:499 (7457): 214-218 被引量:5086
标识
DOI:10.1038/nature12213
摘要

As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助光亮的思天采纳,获得10
刚刚
皇甫藏鸟发布了新的文献求助10
刚刚
刚刚
mjlink完成签到,获得积分10
1秒前
CodeCraft应助淘气科研采纳,获得10
1秒前
2秒前
2秒前
JamesPei应助激昂的白凡采纳,获得10
3秒前
Scidog完成签到,获得积分0
3秒前
小李完成签到,获得积分10
3秒前
yangliu071998完成签到,获得积分10
3秒前
3秒前
隐形曼青应助Ampace小老弟采纳,获得10
4秒前
Lucas应助文艺的白开水采纳,获得10
4秒前
4秒前
4秒前
typpppp完成签到,获得积分10
4秒前
saluo完成签到,获得积分10
5秒前
LmyHusband完成签到,获得积分10
5秒前
Lucas应助隐形的笑白采纳,获得10
5秒前
宁静致远完成签到,获得积分10
5秒前
Thunnus001完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
钱塘郎中发布了新的文献求助10
7秒前
Six_seven完成签到,获得积分10
7秒前
雨慧发布了新的文献求助10
8秒前
清辉夜凝完成签到,获得积分10
8秒前
8秒前
请您多关心完成签到 ,获得积分10
8秒前
xiezhenghong发布了新的文献求助10
9秒前
Haiyang应助搞怪莫茗采纳,获得10
10秒前
LiWeipeng完成签到,获得积分10
10秒前
Casper完成签到,获得积分10
10秒前
zhutier完成签到,获得积分10
10秒前
花样完成签到,获得积分10
11秒前
天天快乐应助kimmie采纳,获得10
11秒前
顾矜应助一科研土豆采纳,获得10
11秒前
光亮听白完成签到,获得积分20
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060