Mutational heterogeneity in cancer and the search for new cancer-associated genes

生物 遗传学 基因组 癌症 外显子组 外显子组测序 突变 基因 DNA测序 人类基因组 癌症基因组测序 计算生物学
作者
Michael S. Lawrence,Petar Stojanov,Paz Polak,Gregory V. Kryukov,Kristian Cibulskis,Andrey Sivachenko,Scott L. Carter,Chip Stewart,Craig H. Mermel,Steven A. Roberts,Adam Kieżun,Peter S. Hammerman,Aaron McKenna,Yotam Drier,Lihua Zou,Alex H. Ramos,Trevor J. Pugh,Nicolas Stransky,Elena Helman,Jaegil Kim,Carrie Sougnez,Lauren Ambrogio,Elizabeth Nickerson,Erica Shefler,Maria L. Cortés,Daniel Auclair,Gordon Saksena,Douglas Voet,Michael S. Noble,Daniel DiCara,Pei Lin,Lee Lichtenstein,David I. Heiman,Timothy R. Fennell,Marcin Imieliński,Bryan Hernandez,Eran Hodis,Sylvan C. Baca,Austin Dulak,Jens G. Lohr,Dan A. Landau,Catherine J. Wu,Jorge Meléndez-Zajgla,Alfredo Hidalgo‐Miranda,Amnon Koren,Steven A. McCarroll,Jaume Mora,Ryan S. Lee,Brian D. Crompton,Robert C. Onofrio,Melissa Parkin,Wendy Winckler,Kristin Ardlie,Stacey Gabriel,Charles W.M. Roberts,Jaclyn A. Biegel,Kimberly Stegmaier,Adam J. Bass,Levi A. Garraway,Matthew Meyerson,Todd R. Golub,Dmitry A. Gordenin,Shamil Sunyaev,Sı́lvia Beà,Gad Getz
出处
期刊:Nature [Springer Nature]
卷期号:499 (7457): 214-218 被引量:5086
标识
DOI:10.1038/nature12213
摘要

As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健明完成签到,获得积分10
1秒前
萍萍完成签到 ,获得积分10
1秒前
1秒前
2秒前
JamesPei应助小小果妈采纳,获得10
2秒前
春华秋实发布了新的文献求助10
3秒前
4秒前
4秒前
健明发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
CXLGE发布了新的文献求助10
5秒前
6秒前
Akim应助yun采纳,获得10
7秒前
叉叉发布了新的文献求助10
8秒前
XXDD小吴发布了新的文献求助10
9秒前
喜欢发布了新的文献求助30
10秒前
12秒前
阿宝完成签到,获得积分0
13秒前
努力搬砖毕业完成签到 ,获得积分10
14秒前
14秒前
16秒前
叉叉完成签到,获得积分20
16秒前
19秒前
19秒前
qingxu发布了新的文献求助10
19秒前
NexusExplorer应助春华秋实采纳,获得10
20秒前
21秒前
榴莲发布了新的文献求助30
22秒前
祁灵枫完成签到,获得积分10
22秒前
Gavin发布了新的文献求助10
24秒前
韩无忧发布了新的文献求助10
25秒前
azw完成签到,获得积分10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
葡萄成熟应助科研通管家采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得30
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870