Mutational heterogeneity in cancer and the search for new cancer-associated genes

生物 遗传学 基因组 癌症 外显子组 外显子组测序 突变 基因 DNA测序 人类基因组 癌症基因组测序 计算生物学
作者
Michael S. Lawrence,Petar Stojanov,Paz Polak,Gregory V. Kryukov,Kristian Cibulskis,Andrey Sivachenko,Scott L. Carter,Chip Stewart,Craig H. Mermel,Steven A. Roberts,Adam Kieżun,Peter S. Hammerman,Aaron McKenna,Yotam Drier,Lihua Zou,Alex H. Ramos,Trevor J. Pugh,Nicolas Stransky,Elena Helman,Jaegil Kim,Carrie Sougnez,Lauren Ambrogio,Elizabeth Nickerson,Erica Shefler,Maria L. Cortés,Daniel Auclair,Gordon Saksena,Douglas Voet,Michael S. Noble,Daniel DiCara,Pei Lin,Lee Lichtenstein,David I. Heiman,Timothy R. Fennell,Marcin Imieliński,Bryan Hernandez,Eran Hodis,Sylvan C. Baca,Austin Dulak,Jens G. Lohr,Dan A. Landau,Catherine J. Wu,Jorge Meléndez-Zajgla,Alfredo Hidalgo‐Miranda,Amnon Koren,Steven A. McCarroll,Jaume Mora,Ryan S. Lee,Brian D. Crompton,Robert C. Onofrio,Melissa Parkin,Wendy Winckler,Kristin Ardlie,Stacey Gabriel,Charles W.M. Roberts,Jaclyn A. Biegel,Kimberly Stegmaier,Adam J. Bass,Levi A. Garraway,Matthew Meyerson,Todd R. Golub,Dmitry A. Gordenin,Shamil Sunyaev,Sı́lvia Beà,Gad Getz
出处
期刊:Nature [Nature Portfolio]
卷期号:499 (7457): 214-218 被引量:5086
标识
DOI:10.1038/nature12213
摘要

As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AMANI_NAKUPENDA完成签到,获得积分10
刚刚
科研助手6应助超帅的鹏飞采纳,获得10
刚刚
xiongyh10完成签到,获得积分10
刚刚
溪山果林发布了新的文献求助10
1秒前
cola完成签到 ,获得积分10
1秒前
兴奋的定帮应助美女采纳,获得10
2秒前
梦魂发布了新的文献求助30
2秒前
Mannose完成签到,获得积分10
2秒前
Geodada完成签到,获得积分10
3秒前
小马甲应助和谐的玉米采纳,获得10
4秒前
顺顺顺完成签到,获得积分10
4秒前
鹿书雪发布了新的文献求助10
4秒前
5秒前
6秒前
Orange应助好运采纳,获得10
6秒前
7秒前
Orange应助张必雨采纳,获得30
8秒前
Ava应助TANG采纳,获得10
9秒前
9秒前
歆琉发布了新的文献求助10
10秒前
11秒前
冬虫草发布了新的文献求助20
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
清秀凉面完成签到 ,获得积分10
12秒前
丁丁很顺利完成签到,获得积分10
13秒前
13秒前
wying发布了新的文献求助30
13秒前
英俊的铭应助犹豫书瑶采纳,获得10
13秒前
13秒前
鱼叔发布了新的文献求助10
14秒前
14秒前
上官若男应助太叔凡儿采纳,获得10
14秒前
研友_08ozgZ完成签到,获得积分10
15秒前
G1997完成签到 ,获得积分10
15秒前
我没那么郝完成签到,获得积分10
16秒前
17秒前
倪小呆发布了新的文献求助10
17秒前
相信发布了新的文献求助10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412