人工神经网络
涡流
计算流体力学
多目标优化
算法
帕累托原理
遗传算法
分组数据处理方法
Cyclone(编程语言)
压力降
计算机科学
集合(抽象数据类型)
数据集
数学优化
工程类
数学
人工智能
机器学习
航空航天工程
气象学
物理
机械
现场可编程门阵列
计算机硬件
程序设计语言
作者
Abolfazl Khalkhali,Hamed Safikhani
标识
DOI:10.1080/0305215x.2011.564619
摘要
In the present study, multi-objective optimization of a cyclone vortex finder is performed in three steps. In the first step, collection efficiency (η) and the pressure drop (Δ p) in a set of cyclones with different vortex finder shapes are numerically investigated using CFD techniques. Two meta-models based on the evolved group method of data handling (GMDH) type neural networks are obtained in the second step, for modelling of η and Δ p with respect to geometrical design variables. Finally, using the obtained polynomial neural networks, multi-objective genetic algorithms are used for Pareto-based optimization of a vortex finder considering two conflicting objectives, η and Δ p.
科研通智能强力驱动
Strongly Powered by AbleSci AI