限制性酶
DNA
生物化学
质粒
生物
基因
酶
蛋白质亚单位
分子生物学
遗传学
作者
G. B. Zavilgelsky,Sergey Rastorguev
出处
期刊:PubMed
日期:2009-05-12
卷期号:43 (2): 264-73
被引量:16
摘要
Genes encoding antirestriction proteins (antirestrictases, inasmuch as the antirestriction proteins inhibit the activity of restriction-modification systems, but have no proper enzyme activity, the name antirestrictase is only tentative) are included in the composition of conjugative plasmids (genes ardABC) and some bacteriophages (genes ocr and darA). Antirestriction proteins inhibit of the type I restriction-modification enzymes and thus protect unmodified DNA of plasmids and bacteriophages from degradation. Antirestriction proteins belong to the "protein mimicry of DNA" family: the spatial structure is like the B-form of DNA, and therefore the antirestriction proteins operated on the principle of concurrent inhibition replacing DNA in the complex with the restriction-modification enzyme. Based on the prepared in vitro mutant forms of ArdA and Ocr, and also on natural proteins ArdA selectively inhibiting restriction activity of the type I enzymes, but not affecting their methylase activity, we have developed a model of complex formation between the antirestriction proteins and the restriction-modification enzymes R2M2S. Antirestriction proteins are capable of competing displacement of the DNA strand from two sites which are situated as follows: 1) in S-subunit (enzyme contact with the specific DNA site) and 2) in R-subunit (through this unit translocation of the DNA strand occurs followed by its degradation). Analysis of estriction and antimodification activities of proteins ArdA and Ocr depending on the expression level of genes ardA and ocr was performed (the cloning of the genes was done under strictly regulated promoter).
科研通智能强力驱动
Strongly Powered by AbleSci AI