苯丙氨酸
氨基酸
苯丙氨酸解氨酶
化学
酪氨酸
立体化学
生物化学
裂解酶
肉桂酸
生物催化
辅因子
酶
氨
有机化学
催化作用
反应机理
标识
DOI:10.1016/j.cbpa.2010.11.009
摘要
Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R = H) and p-hydroxycinnamic (1: R = OH) to generate l-phenylalanine (2: R = H) and l-tyrosine (2: R = OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of l-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of l-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids.
科研通智能强力驱动
Strongly Powered by AbleSci AI