Abstract A continuum theory for dilute suspensions of large-aspect-ratio particles is applied to the flow of fiber suspensions through contractions. The theory, which incorporates the statistical orientation distribution function into the stress equation, predicts that the flow of dilute suspensions will differ qualitatively from the flow of the suspending fluid. The theory is in excellent agreement with experiments on the flow of suspensions of chopped-glass fibers through axisymmetric contractions, where substantial enlargement of the recirculating corner vortex is observed at volume fractions of 0.1% and less.