化学
双金属片
自然键轨道
金属
结晶学
分子
配体(生物化学)
铜
立体化学
电子结构
密度泛函理论
计算化学
有机化学
生物化学
受体
作者
P.A. Vigato,S. Tamburini,David E. Fenton
标识
DOI:10.1016/0010-8545(60)80002-1
摘要
Bridged dinuclear metal complexes have fascinated scientists worldwide, and remarkable success has been achieved to unravel the electronic structures, structure–function relationship, coordination environments, and fine mechanistic details of the enzymes owing to the repercussion of biomimetic studies carried out on dinuclear model systems. Molecular level study of these systems integrated with spectroscopic study helps in gaining deep insights about structural and electronic aspects of natural enzymatic systems. Considering the same, here first time we report DFT study on bridged non-heme metal complexes based on N-Et-HPTB ligand system containing homovalent (MIIMII); {[(MnII)2(O2CCH3)(N-Et-HPTB)]2+; Species I), [(FeII)2(O2CCH3)(N-Et-HPTB)]2+; Species II), [(CoII)2(O2CCH3)(N-Et-HPTB)]2+; Species III)} and heterovalent (MIIIMII): {[(MnIII)(MnII)(O2)(N-Et-HPTB)]2+; Species Ia) [(FeIII)(FeII)(O2)(N-Et-HPTB)]2+; Species IIa) and [(CoIII)(CoII)(O2)(N-Et-HPTB)]2+; Species IIIa)} dinuclear metal centres. Bridging oxygen bears a significant spin density which may prompt important chemical reactions involving activation of bonds like C-H/O-H/N-H etc. TD-DFT calculations for UV–Visible absorption have been carried out to further shed light on structural–functional and electronic structures of these dinuclear species. Studying these dinuclear species may be a good starting point for the study of active sites of the bimetallic centre of dinuclear enzymes and thus may serve as fascinating spectroscopic models. Further, FMO analysis, MEP mapping, and NBO calculations were employed to analyze bonding aspects predict theoretical reactivity behaviour and any kind of stabilizing interactions present in the reported species.
科研通智能强力驱动
Strongly Powered by AbleSci AI