Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 电子工程 计算机视觉 滤波器(信号处理) 工程类 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Informa]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子Lee发布了新的文献求助10
刚刚
JamesPei应助CO2采纳,获得10
刚刚
刚刚
lzx完成签到,获得积分10
刚刚
桐桐应助柚子采纳,获得10
1秒前
今后应助一忽儿左采纳,获得10
1秒前
七田皿发布了新的文献求助10
2秒前
光亮的寻雪完成签到 ,获得积分10
2秒前
Jasper应助鲤鱼南莲采纳,获得10
2秒前
壹贰叁完成签到,获得积分10
3秒前
科研大圣完成签到,获得积分10
3秒前
zxx完成签到,获得积分10
3秒前
zhuboujs发布了新的文献求助10
3秒前
4秒前
4秒前
对方正在看文献完成签到,获得积分10
5秒前
共享精神应助Itsdami采纳,获得10
5秒前
Cjx完成签到,获得积分10
5秒前
5秒前
高高完成签到,获得积分10
6秒前
嘉佳发布了新的文献求助10
6秒前
CodeCraft应助刘桑桑采纳,获得10
6秒前
6秒前
yang完成签到,获得积分10
7秒前
7秒前
烟花应助zxx采纳,获得30
7秒前
Mystic完成签到,获得积分10
8秒前
受伤书文发布了新的文献求助10
8秒前
李健的小迷弟应助admin采纳,获得10
8秒前
9秒前
hhhh完成签到,获得积分10
9秒前
9秒前
9秒前
研友_VZG7GZ应助zhs采纳,获得10
9秒前
852应助小付采纳,获得10
10秒前
斯文败类应助九霄采纳,获得10
10秒前
10秒前
10秒前
AlexLam完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594