亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 电子工程 计算机视觉 滤波器(信号处理) 工程类 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Informa]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
lin完成签到 ,获得积分10
16秒前
21秒前
三泥完成签到,获得积分10
29秒前
Miracle完成签到,获得积分10
33秒前
Yang完成签到 ,获得积分10
41秒前
村长发布了新的文献求助10
41秒前
46秒前
yoyo完成签到 ,获得积分10
48秒前
和谐诗柳发布了新的文献求助10
52秒前
halo1004发布了新的文献求助10
59秒前
Rae完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
和谐诗柳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
我是老大应助PPD采纳,获得10
1分钟前
1分钟前
gcr完成签到 ,获得积分10
1分钟前
1分钟前
PPD完成签到,获得积分10
1分钟前
PPD发布了新的文献求助10
1分钟前
liuynnn发布了新的文献求助10
1分钟前
小小康康完成签到,获得积分10
1分钟前
223老师完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助无心的问柳采纳,获得10
1分钟前
1分钟前
1分钟前
yishang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wavelet发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Qinghen发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664093
求助须知:如何正确求助?哪些是违规求助? 4857445
关于积分的说明 15107133
捐赠科研通 4822538
什么是DOI,文献DOI怎么找? 2581527
邀请新用户注册赠送积分活动 1535744
关于科研通互助平台的介绍 1493963