Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 滤波器(信号处理) 电子工程 工程类 计算机视觉 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Taylor & Francis]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
从容飞烟完成签到,获得积分10
刚刚
共享精神应助夏虫采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
斌帥发布了新的文献求助10
1秒前
zhiguoxin完成签到 ,获得积分10
2秒前
肥小耗发布了新的文献求助10
2秒前
2秒前
2秒前
kevindm完成签到,获得积分10
3秒前
lili发布了新的文献求助10
3秒前
乐乐应助平常无颜采纳,获得10
4秒前
科研通AI6应助冷艳的钥匙采纳,获得10
4秒前
5秒前
隐形曼青应助Jiayi采纳,获得10
5秒前
eeush发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
zxe发布了新的文献求助30
5秒前
Mingda发布了新的文献求助10
5秒前
6秒前
盛yyyy完成签到,获得积分10
6秒前
7秒前
汉堡包应助lalala采纳,获得10
7秒前
8秒前
科研通AI6应助易辙采纳,获得10
8秒前
9秒前
www发布了新的文献求助10
9秒前
9秒前
哈哈哈完成签到 ,获得积分20
9秒前
科研通AI2S应助李金文采纳,获得10
9秒前
黄黄发布了新的文献求助10
10秒前
keanu发布了新的文献求助20
10秒前
10秒前
辛勤的乐荷完成签到,获得积分10
11秒前
斯文的元柏完成签到,获得积分20
12秒前
12秒前
科研通AI2S应助靓丽的硬币采纳,获得10
12秒前
12秒前
天才罗发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067