Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 电子工程 计算机视觉 滤波器(信号处理) 工程类 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Informa]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
llopcop完成签到,获得积分10
3秒前
吱吱熊sama完成签到,获得积分10
3秒前
唱唱反调完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
mzn6664完成签到,获得积分10
4秒前
4秒前
风大鱼贵完成签到,获得积分10
5秒前
yang发布了新的文献求助10
5秒前
Oz完成签到,获得积分10
5秒前
Lucas应助以木采纳,获得10
7秒前
闾丘德地完成签到,获得积分10
7秒前
7秒前
7秒前
烟花应助tguczf采纳,获得10
7秒前
风大鱼贵发布了新的文献求助10
7秒前
feifanyang发布了新的文献求助10
7秒前
8秒前
loom完成签到 ,获得积分10
9秒前
情怀应助QGG采纳,获得10
9秒前
9秒前
超帅问儿完成签到,获得积分10
10秒前
10秒前
11秒前
LINHAI完成签到,获得积分10
11秒前
11秒前
CipherSage应助悦耳草莓采纳,获得10
12秒前
从容的连碧完成签到,获得积分20
12秒前
汉堡包应助妮妮采纳,获得10
13秒前
mmol发布了新的文献求助10
13秒前
异念卿完成签到 ,获得积分10
13秒前
水123发布了新的文献求助10
13秒前
13秒前
14秒前
小小青椒发布了新的文献求助10
16秒前
zhangtengteng完成签到,获得积分10
16秒前
香蕉觅云应助忧郁的宝莹采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266