Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 电子工程 计算机视觉 滤波器(信号处理) 工程类 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Informa]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助刘刘pf采纳,获得10
1秒前
hanleiharry1发布了新的文献求助10
3秒前
why完成签到,获得积分10
8秒前
八风乱动完成签到,获得积分10
11秒前
1111发布了新的文献求助10
12秒前
WalkToSky完成签到,获得积分10
14秒前
llllll完成签到 ,获得积分10
14秒前
hua完成签到,获得积分10
17秒前
18秒前
Sylvia_J完成签到 ,获得积分10
18秒前
晚亭完成签到,获得积分10
19秒前
科研通AI2S应助gaoshen采纳,获得30
19秒前
加菲丰丰应助suuny987采纳,获得20
23秒前
Narcissus完成签到,获得积分10
25秒前
benny279发布了新的文献求助10
25秒前
乐乐应助迅速友容采纳,获得10
29秒前
彼岸完成签到,获得积分10
29秒前
乐乐应助像风一样啊采纳,获得10
30秒前
31秒前
32秒前
32秒前
桃子完成签到 ,获得积分10
33秒前
赘婿应助dreamhigh-mentha采纳,获得10
34秒前
WSGQT完成签到 ,获得积分10
34秒前
fangzhang发布了新的文献求助10
35秒前
没有蛀牙完成签到,获得积分10
37秒前
完美世界应助阿尼亚采纳,获得10
37秒前
11发布了新的文献求助10
37秒前
39秒前
bkagyin应助搞怪书兰采纳,获得10
39秒前
40秒前
Hustle完成签到 ,获得积分10
40秒前
麻了发布了新的文献求助10
40秒前
酷酷的哲发布了新的文献求助10
40秒前
充电宝应助科研通管家采纳,获得10
42秒前
李爱国应助科研通管家采纳,获得10
43秒前
LC应助科研通管家采纳,获得30
43秒前
修仙应助科研通管家采纳,获得10
43秒前
英姑应助科研通管家采纳,获得10
43秒前
Orange应助科研通管家采纳,获得10
43秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102