已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 滤波器(信号处理) 电子工程 工程类 计算机视觉 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Taylor & Francis]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HKmi完成签到,获得积分10
1秒前
王壕发布了新的文献求助10
1秒前
环走鱼尾纹完成签到 ,获得积分10
3秒前
敬业乐群完成签到,获得积分10
3秒前
Lucas应助Myl采纳,获得10
6秒前
wtian完成签到,获得积分10
6秒前
10秒前
胡海楠完成签到,获得积分10
11秒前
丘比特应助可乐采纳,获得10
14秒前
zz完成签到,获得积分20
15秒前
默默完成签到 ,获得积分10
19秒前
积极废物完成签到 ,获得积分10
20秒前
吴畅完成签到,获得积分20
21秒前
zz发布了新的文献求助10
23秒前
吴畅发布了新的文献求助10
25秒前
27秒前
昂帕帕斯完成签到,获得积分10
28秒前
满意涵梅完成签到 ,获得积分10
30秒前
祁风完成签到 ,获得积分10
31秒前
33秒前
三月完成签到,获得积分10
33秒前
lht完成签到 ,获得积分10
34秒前
橘橘橘子皮完成签到 ,获得积分10
36秒前
Sunziy完成签到,获得积分10
38秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
浮游应助科研通管家采纳,获得10
39秒前
39秒前
41秒前
42秒前
2jz完成签到,获得积分10
43秒前
lucky完成签到 ,获得积分10
43秒前
浮游应助吴畅采纳,获得10
46秒前
传奇3应助胡妍采纳,获得10
46秒前
小张在努力完成签到 ,获得积分10
47秒前
卓初露完成签到 ,获得积分10
48秒前
bkagyin应助闪闪的草莓采纳,获得10
50秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130