Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 滤波器(信号处理) 电子工程 工程类 计算机视觉 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Taylor & Francis]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从基态跃迁完成签到,获得积分10
刚刚
呆萌南松完成签到 ,获得积分10
2秒前
2秒前
数学情缘完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
shyotion完成签到,获得积分20
4秒前
4秒前
5秒前
柒染完成签到,获得积分10
5秒前
lg应助Zhang采纳,获得10
6秒前
温暖的涵易应助Zhang采纳,获得30
6秒前
6秒前
小程完成签到 ,获得积分10
6秒前
领导范儿应助叶子采纳,获得10
7秒前
7秒前
8秒前
8秒前
AHR发布了新的文献求助10
9秒前
shyotion发布了新的文献求助10
9秒前
小王啵啵发布了新的文献求助10
9秒前
10秒前
韩_发布了新的文献求助20
10秒前
10秒前
共享精神应助hklong采纳,获得10
10秒前
星移发布了新的文献求助10
10秒前
kingwill应助生动曼冬采纳,获得20
10秒前
anlan8888完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
绽放发布了新的文献求助10
12秒前
李莉莉发布了新的文献求助10
13秒前
儒雅的幻然完成签到,获得积分10
13秒前
fmx发布了新的文献求助10
13秒前
Jay完成签到 ,获得积分10
14秒前
回忆lhy完成签到,获得积分10
15秒前
16秒前
danielbest1234完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955094
求助须知:如何正确求助?哪些是违规求助? 3501442
关于积分的说明 11102825
捐赠科研通 3231691
什么是DOI,文献DOI怎么找? 1786550
邀请新用户注册赠送积分活动 870142
科研通“疑难数据库(出版商)”最低求助积分说明 801813