已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sampling methods and sensitivity analysis for large parameter sets

灵敏度(控制系统) 数学 集合(抽象数据类型) 黑匣子 二次方程 数学优化 采样(信号处理) 统计 计算机科学 人工智能 几何学 电子工程 计算机视觉 滤波器(信号处理) 工程类 程序设计语言
作者
Terry Andres
出处
期刊:Journal of Statistical Computation and Simulation [Informa]
卷期号:57 (1-4): 77-110 被引量:82
标识
DOI:10.1080/00949659708811804
摘要

Abstract Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences. Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter. It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters. The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions. The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD). The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved. Keywords: Sensitivity analysisiterated fractional factorial design (IFFD)latin hypercubecomputer modelsparameter screeningsimulationmathematicasupersaturated design

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦啦啦完成签到,获得积分10
刚刚
万海发布了新的文献求助10
刚刚
万能图书馆应助混子玉采纳,获得10
1秒前
taco发布了新的文献求助10
2秒前
dzjin发布了新的文献求助10
2秒前
丘比特应助Sam采纳,获得10
2秒前
ZXK完成签到 ,获得积分10
4秒前
6秒前
烟花应助刘卿婷采纳,获得20
7秒前
dzjin完成签到,获得积分10
7秒前
Bellis完成签到 ,获得积分10
8秒前
朴素易梦发布了新的文献求助10
9秒前
9秒前
11秒前
嘻嘻完成签到 ,获得积分10
13秒前
柒染完成签到 ,获得积分10
15秒前
baosong发布了新的文献求助10
15秒前
李爱国应助壮观的雅绿采纳,获得10
18秒前
ZZ完成签到,获得积分20
20秒前
研友_LOqqmZ完成签到 ,获得积分10
23秒前
24秒前
魁梧的觅松完成签到 ,获得积分10
26秒前
丘比特应助baosong采纳,获得10
26秒前
27秒前
深情安青应助江江采纳,获得10
27秒前
27秒前
123study0完成签到,获得积分10
28秒前
科研通AI6应助lxl采纳,获得10
28秒前
开朗的抽屉完成签到 ,获得积分10
29秒前
journey完成签到 ,获得积分10
31秒前
笑点低的初兰完成签到,获得积分10
32秒前
33秒前
阔达的紫萍完成签到,获得积分10
33秒前
能干海亦完成签到,获得积分10
33秒前
冷酷愚志完成签到,获得积分10
35秒前
35秒前
36秒前
38秒前
39秒前
天琪关注了科研通微信公众号
39秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644383
求助须知:如何正确求助?哪些是违规求助? 4763842
关于积分的说明 15024878
捐赠科研通 4802778
什么是DOI,文献DOI怎么找? 2567562
邀请新用户注册赠送积分活动 1525318
关于科研通互助平台的介绍 1484781