CuO nanocrystals with different shapes, i.e. irregular nanoparticles, nanobelts and nanoplatelets, have been synthesized by controlling a few critical synthesis parameters to explore their catalytic properties. It was found that the rate of CO oxidation on the nanoplatelets is over six times higher than that on the nanoparticles and about three times higher than that on the nanobelts at 110 °C. Based on combined characterizations, such as BET, XRD, TEM, HRTEM and CO temperature-programmed reduction, the relationship between the catalytic reactivity and the shape as well as the predominantly exposed crystal planes of the CuO nanocrystals has been discussed.