Machine learning-based algorithms to predict severe psychological distress among cancer patients with spinal metastatic disease

医学 逻辑回归 背景(考古学) 疾病 机器学习 癌症 内科学 算法 随机森林 物理疗法 肿瘤科 人工智能 生物 古生物学 计算机科学
作者
Le Gao,Yuncen Cao,Xuyong Cao,Xiaolin Shi,Mingxing Lei,Xiuyun Su,Yaosheng Liu
出处
期刊:The Spine Journal [Elsevier]
卷期号:23 (9): 1255-1269 被引量:19
标识
DOI:10.1016/j.spinee.2023.05.009
摘要

Metastatic spinal disease is an advanced stage of cancer patients and often suffer from terrible psychological health status; however, the ability to estimate the risk probability of this adverse outcome using current available data is very limited.The goal of this study was to propose a precise model based on machine learning techniques to predict psychological status among cancer patients with spinal metastatic disease.A prospective cohort study.A total of 1043 cancer patients with spinal metastatic disease were included.The main outcome was severe psychological distress.The total of patients was randomly divided into a training dataset and a testing dataset on a ratio of 9:1. Patients' demographics, lifestyle choices, cancer-related features, clinical manifestations, and treatments were collected as potential model predictors in the study. Five machine learning algorithms, including XGBoosting machine, random forest, gradient boosting machine, support vector machine, and ensemble prediction model, as well as a logistic regression model were employed to train and optimize models in the training set, and their predictive performance was assessed in the testing set.Up to 21.48% of all patients who were recruited had severe psychological distress. Elderly patients (p<0.001), female (p =0.045), current smoking (p=0.002) or drinking (p=0.003), a lower level of education (p<0.001), a stronger spiritual desire (p<0.001), visceral metastasis (p=0.005), and a higher Eastern Cooperative Oncology Group (ECOG) score (p<0.001) were significantly associated with worse psychological health. With an area under the curve (AUC) of 0.865 (95% CI: 0.788-0.941) and an accuracy of up to 0.843, the gradient boosting machine algorithm performed best in the prediction of the outcome, followed by the XGBooting machine algorithm (AUC: 0.851, 95% CI: 0.768-0.934; Accuracy: 0.826) and ensemble prediction (AUC: 0.851, 95% CI: 0.770-0.932; Accuracy: 0.809) in the testing set. In contrast, the AUC of the logistic regression model was only 0.836 (95% CI: 0.756-0.916; Accuracy: 0.783).Machine learning models have greater predictive power and can offer useful tools to identify individuals with spinal metastatic disease who are experiencing severe psychological distress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可夫司机完成签到 ,获得积分10
1秒前
石慧君完成签到 ,获得积分10
2秒前
xiaobai123456发布了新的文献求助10
2秒前
王大帅发布了新的文献求助10
2秒前
尼i完成签到,获得积分10
3秒前
4秒前
4秒前
肖梦秋发布了新的文献求助10
6秒前
天天向上完成签到 ,获得积分10
9秒前
H黄发布了新的文献求助30
9秒前
陈谨完成签到 ,获得积分10
9秒前
xiaobai123456发布了新的文献求助10
13秒前
Szw666完成签到,获得积分10
14秒前
15秒前
16秒前
科研通AI6.1应助肖梦秋采纳,获得10
17秒前
17秒前
jasmine完成签到,获得积分10
18秒前
儒雅HR发布了新的文献求助10
19秒前
22秒前
Dailei发布了新的文献求助10
23秒前
xiaobai123456发布了新的文献求助10
24秒前
耿新冉发布了新的文献求助10
26秒前
王欢完成签到,获得积分10
26秒前
功夫熊猫完成签到 ,获得积分10
26秒前
贪玩的秋柔应助海不扬波采纳,获得10
27秒前
29秒前
30秒前
鹄之梦2006发布了新的文献求助10
32秒前
晚晚发布了新的文献求助10
35秒前
pengpeng发布了新的文献求助10
35秒前
35秒前
36秒前
37秒前
温婉的浩天完成签到,获得积分10
39秒前
pengpeng完成签到,获得积分20
40秒前
40秒前
42秒前
xiaobai123456发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856827
求助须知:如何正确求助?哪些是违规求助? 6324695
关于积分的说明 15635304
捐赠科研通 4971265
什么是DOI,文献DOI怎么找? 2681302
邀请新用户注册赠送积分活动 1625215
关于科研通互助平台的介绍 1582265