Machine learning-based algorithms to predict severe psychological distress among cancer patients with spinal metastatic disease

医学 逻辑回归 背景(考古学) 疾病 机器学习 癌症 内科学 算法 随机森林 物理疗法 肿瘤科 人工智能 生物 古生物学 计算机科学
作者
Le Gao,Yuncen Cao,Xuyong Cao,Xiaolin Shi,M. Lei,Xiuyun Su,Yaosheng Liu
出处
期刊:The Spine Journal [Elsevier]
卷期号:23 (9): 1255-1269 被引量:11
标识
DOI:10.1016/j.spinee.2023.05.009
摘要

Metastatic spinal disease is an advanced stage of cancer patients and often suffer from terrible psychological health status; however, the ability to estimate the risk probability of this adverse outcome using current available data is very limited.The goal of this study was to propose a precise model based on machine learning techniques to predict psychological status among cancer patients with spinal metastatic disease.A prospective cohort study.A total of 1043 cancer patients with spinal metastatic disease were included.The main outcome was severe psychological distress.The total of patients was randomly divided into a training dataset and a testing dataset on a ratio of 9:1. Patients' demographics, lifestyle choices, cancer-related features, clinical manifestations, and treatments were collected as potential model predictors in the study. Five machine learning algorithms, including XGBoosting machine, random forest, gradient boosting machine, support vector machine, and ensemble prediction model, as well as a logistic regression model were employed to train and optimize models in the training set, and their predictive performance was assessed in the testing set.Up to 21.48% of all patients who were recruited had severe psychological distress. Elderly patients (p<0.001), female (p =0.045), current smoking (p=0.002) or drinking (p=0.003), a lower level of education (p<0.001), a stronger spiritual desire (p<0.001), visceral metastasis (p=0.005), and a higher Eastern Cooperative Oncology Group (ECOG) score (p<0.001) were significantly associated with worse psychological health. With an area under the curve (AUC) of 0.865 (95% CI: 0.788-0.941) and an accuracy of up to 0.843, the gradient boosting machine algorithm performed best in the prediction of the outcome, followed by the XGBooting machine algorithm (AUC: 0.851, 95% CI: 0.768-0.934; Accuracy: 0.826) and ensemble prediction (AUC: 0.851, 95% CI: 0.770-0.932; Accuracy: 0.809) in the testing set. In contrast, the AUC of the logistic regression model was only 0.836 (95% CI: 0.756-0.916; Accuracy: 0.783).Machine learning models have greater predictive power and can offer useful tools to identify individuals with spinal metastatic disease who are experiencing severe psychological distress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhaolee完成签到 ,获得积分10
1秒前
情怀应助LYH采纳,获得10
1秒前
1秒前
Ampace小老弟完成签到 ,获得积分10
2秒前
2秒前
朵朵完成签到,获得积分10
3秒前
狄鹤轩发布了新的文献求助10
3秒前
郑一发布了新的文献求助10
3秒前
大个应助小一采纳,获得10
4秒前
打打应助baekhyun采纳,获得10
4秒前
爆米花应助奶味蓝采纳,获得20
4秒前
12发布了新的文献求助10
4秒前
5秒前
5秒前
Tong发布了新的文献求助30
7秒前
7秒前
vivianfou完成签到,获得积分10
8秒前
燕小丙完成签到,获得积分10
8秒前
Vaibhav发布了新的文献求助10
9秒前
millie完成签到,获得积分20
11秒前
美满的书南完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
虚幻井发布了新的文献求助10
17秒前
小白完成签到,获得积分10
17秒前
18秒前
小一完成签到,获得积分10
18秒前
18秒前
舒服的八宝粥完成签到 ,获得积分10
21秒前
华仔应助你hao采纳,获得10
21秒前
Fx完成签到,获得积分10
22秒前
22秒前
捏捏捏完成签到 ,获得积分10
23秒前
上官若男应助zhangfuchao采纳,获得10
24秒前
25秒前
善学以致用应助大方念云采纳,获得10
26秒前
若兰完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522937
求助须知:如何正确求助?哪些是违规求助? 3103910
关于积分的说明 9267916
捐赠科研通 2800665
什么是DOI,文献DOI怎么找? 1537075
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759