LiFoL: An Efficient Framework for Financial Distress Prediction in High-Dimensional Unbalanced Scenario

可解释性 增采样 计算机科学 特征(语言学) 人工智能 维数之咒 机器学习 班级(哲学) 数据挖掘 语言学 图像(数学) 哲学
作者
Jianyong Wang,Xiaojun Kuang,Jifeng Guo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcss.2023.3276059
摘要

Corporate financial distress will significantly damage the company’s and its stakeholders’ interests and even lead to a global financial crisis. Therefore, finding an efficient method for financial distress prediction (FDP) to avoid greater losses is essential. Although there is a lot of research and progress in this field, the existing methods rarely consider the problems of high dimensionality and class imbalance, which will largely limit the models to achieve satisfactory performance. To alleviate these problems, this article first proposes a novel Lightspace-SMOTE upsampling method, which can reduce the feature dimensionality and increase the signal-to-noise ratio (SNR) of the original data and then upsample it to increase the number of minor class samples. In addition, this article proposes an efficient ensemble framework (LiFoL) that combines Lightspace-SMOTE, focal loss (FL), and LightGBM, which can not only focus more on minor class and the hard-to-class samples but also obtain better performance. At the same time, the feature importance provided by the model can provide strong support for model interpretability. Experimental results show that the Lightspace-SMOTE upsampling method can help the model achieve higher scores in area under ROC curve (AUC) and recall, especially in the case of longer prediction periods. Compared with current methods, LiFoL can achieve more than 10% improvement in AUC and more than 20% in recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助dengx1采纳,获得10
刚刚
cxlhzq完成签到,获得积分10
1秒前
chenhd完成签到 ,获得积分10
1秒前
果冻完成签到,获得积分10
2秒前
WJ1989完成签到,获得积分10
2秒前
DE2022发布了新的文献求助20
2秒前
怡然的无敌完成签到,获得积分10
3秒前
iNk应助dd采纳,获得10
3秒前
汉堡包应助活力听兰采纳,获得10
3秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
5秒前
6秒前
6秒前
无情山水发布了新的文献求助10
7秒前
充电宝应助lyla采纳,获得10
8秒前
夏xia完成签到,获得积分10
8秒前
Yummy发布了新的文献求助10
9秒前
Mrivy应助想多睡会儿采纳,获得10
11秒前
ning完成签到,获得积分10
11秒前
Lucas应助DE2022采纳,获得10
12秒前
QJL完成签到,获得积分10
12秒前
12秒前
15秒前
15秒前
severus完成签到 ,获得积分10
16秒前
典雅的夜安完成签到,获得积分10
16秒前
halona发布了新的文献求助10
17秒前
Jasper应助勤恳的元绿采纳,获得10
18秒前
YYL完成签到,获得积分10
18秒前
舟夏完成签到 ,获得积分10
18秒前
朴素的雨筠完成签到,获得积分20
19秒前
微笑的人形立牌完成签到,获得积分10
19秒前
研友_VZG7GZ应助灰灰12138采纳,获得10
19秒前
曲聋五完成签到 ,获得积分10
22秒前
香蕉觅云应助zhu ning采纳,获得10
22秒前
23秒前
和和完成签到,获得积分10
23秒前
24秒前
apckkk完成签到 ,获得积分10
25秒前
neckerzhu完成签到 ,获得积分10
25秒前
西瓜西瓜完成签到,获得积分10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239257
求助须知:如何正确求助?哪些是违规求助? 2884555
关于积分的说明 8234216
捐赠科研通 2552608
什么是DOI,文献DOI怎么找? 1380889
科研通“疑难数据库(出版商)”最低求助积分说明 649099
邀请新用户注册赠送积分活动 624817