吸引子
数学
分叉
可见的
非线性系统
拓扑熵
消光(光学矿物学)
统计物理学
耦合映象格
分形
数学分析
纯数学
物理
控制理论(社会学)
计算机科学
混沌同步
量子力学
人工智能
光学
控制(管理)
作者
Aishwaraya,Divya Gupta,V. V. M. S. Chandramouli
标识
DOI:10.1080/10236198.2022.2142468
摘要
We apply the deformation scheme to the classical Ricker map and obtain a q-deformed Ricker map, namely, q-Ricker map. The aim of the paper is to investigate the nonlinear dynamics, bifurcation structure, and topological entropy of q-Ricker map. In particular, we show that q-Ricker map proclaims many exciting phenomena that are remarkable in one-dimensional dynamical systems, such as the presence of coexisting attractors, physically non-observable chaos, hydra paradox, bubbling effect, and extinction. We discuss fold and flip bifurcations and further the presence of stochastically stable chaos. Finally, we show that a certain amount of deformation in the system can keep it in equilibrium; however, excessive deformation causes extinction.
科研通智能强力驱动
Strongly Powered by AbleSci AI