Multiscale evolution mechanism of sandstone under wet-dry cycles of deionized water: From molecular scale to macroscopic scale

白云石 粘土矿物 溶解 矿物学 地质学 矿物 微观结构 吸附 材料科学 复合材料 化学工程 化学 冶金 工程类 有机化学
作者
Jie Meng,Changdong Li,Jia‐Qing Zhou,Zihan Zhang,Sheng‐Yi Yan,Yahui Zhang,Dewei Huang,Guihua Wang
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
卷期号:15 (5): 1171-1185 被引量:15
标识
DOI:10.1016/j.jrmge.2022.10.008
摘要

Water is the most abundant molecule found on the earth's surface and is a key factor in multiscale rock destruction. However, given the fine-grained nature of rock and the complexity of its internal structure, the microstructural evolution of rock under the action of water has not yet been elucidated in detail, and little is understood about the relationship between the rock structure and solid–liquid unit. A variety of techniques were used in this study to track the mechanical properties, pore and crack characteristics, and mineral structure degradation characteristics of sandstone at different stages under the action of deionized water, and the evolution mechanisms of the microstructure were analyzed at the molecular scale. The results showed that during the water–rock interaction process, water was adsorbed onto the surface of dolomite minerals and the hydrophilic surface of clay minerals, forming a high-density hydrogen bond network. However, different mineral surface structures had different water adsorption structures, resulting in the strain of the dense clay mineral aggregates under expansion action. Stress concentrated at crack tips under the capillary force of dolomite minerals (very weak dolomite dissolution). These effects resulted in a substantial increase in the number of small pores and enhancements in pore–crack connectivity, and the rock strength exhibited varying degrees of decline at different stages of wet-dry cycles. In general, the results of this paper will help to further elucidate the internal connections between molecular-scale and macroscale processes in rock science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hancen完成签到,获得积分10
刚刚
刚刚
美满的机器猫完成签到,获得积分10
1秒前
zhang发布了新的文献求助10
1秒前
anla完成签到,获得积分10
1秒前
不眠的人完成签到,获得积分10
1秒前
小洪俊熙完成签到,获得积分10
2秒前
嗣音完成签到,获得积分10
2秒前
饱满的百招完成签到 ,获得积分10
3秒前
乐乐应助友好凌柏采纳,获得10
3秒前
顽固分子完成签到 ,获得积分10
4秒前
4秒前
Yimi刘博完成签到 ,获得积分10
5秒前
民工完成签到,获得积分10
5秒前
称心如意完成签到 ,获得积分10
5秒前
张小苟发布了新的文献求助10
5秒前
5秒前
FashionBoy应助飘逸的大碗采纳,获得10
5秒前
6秒前
巴拉巴拉发布了新的文献求助10
6秒前
菜菜完成签到,获得积分10
6秒前
落寞太阳完成签到,获得积分10
7秒前
Wanpy完成签到 ,获得积分10
7秒前
Spidyyy完成签到,获得积分10
8秒前
汉堡包应助布丁采纳,获得10
8秒前
不加糖的刘先森完成签到,获得积分10
8秒前
顽固分子发布了新的文献求助10
9秒前
xiaowan发布了新的文献求助10
9秒前
luoluo发布了新的文献求助10
9秒前
yyk完成签到,获得积分10
9秒前
Febrine0502完成签到,获得积分10
10秒前
巴拉巴拉完成签到,获得积分10
10秒前
tulips发布了新的文献求助10
10秒前
大模型应助晓晓雪采纳,获得30
11秒前
昂口3完成签到 ,获得积分10
11秒前
ZK999完成签到,获得积分10
12秒前
13秒前
mhl11应助多看报采纳,获得10
13秒前
老肥完成签到,获得积分10
13秒前
要减肥的砖头完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257464
求助须知:如何正确求助?哪些是违规求助? 2899400
关于积分的说明 8305459
捐赠科研通 2568655
什么是DOI,文献DOI怎么找? 1395219
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630767