Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance

医学 迭代重建 图像质量 图像噪声 神经组阅片室 超声波 放射科 血管造影 计算机断层血管造影 核医学 颈动脉 人工智能 图像(数学) 计算机科学 外科 神经学 精神科
作者
Chenyu Jiang,Dan Jin,Zhuoheng Liu,Yan Zhang,Ming Ni,Huishu Yuan
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:13 (1) 被引量:10
标识
DOI:10.1186/s13244-022-01308-2
摘要

To evaluate image quality and diagnostic performance of carotid dual-energy computed tomography angiography (DECTA) using deep learning image reconstruction (DLIR) compared with images using adaptive statistical iterative reconstruction-Veo (ASIR-V).Carotid DECTA datasets of 28 consecutive patients were reconstructed at 50 keV using DLIR at low, medium, and high levels (DLIR-L, DLIR-M, and DLIR-H) and 80% ASIR-V algorithms. Mean attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at different levels of arteries were measured and calculated. Image quality for noise and texture, depiction of arteries, and diagnostic performance toward carotid plaques were assessed subjectively by two radiologists. Quantitative and qualitative parameters were compared between the ASIR-V, DLIR-L, DLIR-M, and DLIR-H groups.The image noise at aorta and common carotid artery, SNR, and CNR at all level arteries of DLIR-H images were significantly higher than those of ASIR-V images (p = 0.000-0.040). The quantitative analysis of DLIR-L and DLIR-M showed comparable denoise capability with ASIR-V. The overall image quality (p = 0.000) and image noise (p = 0.000-0.014) were significantly better in the DLIR-M and DLIR-H images. The image texture was improved by DLR at all level compared to ASIR-V images (p = 0.000-0.008). Depictions of head and neck arteries and diagnostic performance were comparable between four groups (p > 0.05).Compared with 80% ASIR-V, we recommend DLIR-H for clinical carotid DECTA reconstruction, which can significantly improve the image quality of carotid DECTA at 50 keV but maintain a desirable diagnostic performance and arterial depiction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shezhinicheng发布了新的文献求助10
1秒前
ningning完成签到,获得积分10
1秒前
1秒前
专注完成签到,获得积分10
2秒前
迷路的诗槐完成签到,获得积分10
2秒前
2秒前
111完成签到,获得积分10
2秒前
殇春秋完成签到,获得积分10
2秒前
虚幻的玉米完成签到 ,获得积分10
3秒前
小怪兽发布了新的文献求助10
3秒前
西松屋地铁完成签到 ,获得积分10
4秒前
殇春秋发布了新的文献求助10
5秒前
QDMENG发布了新的文献求助10
6秒前
yu完成签到,获得积分10
6秒前
科研打工人完成签到,获得积分10
6秒前
香蕉觅云应助Daliyaii采纳,获得10
6秒前
lili完成签到 ,获得积分10
7秒前
香蕉觅云应助Adam采纳,获得10
7秒前
靓丽的采白完成签到,获得积分10
8秒前
舒心渊思完成签到 ,获得积分10
8秒前
8秒前
8秒前
spark完成签到 ,获得积分10
8秒前
heyaoe发布了新的文献求助10
10秒前
小黄鱼完成签到 ,获得积分10
10秒前
coolboy111完成签到,获得积分10
10秒前
佟语雪完成签到,获得积分10
11秒前
11秒前
2032jia完成签到,获得积分10
11秒前
dy完成签到,获得积分10
12秒前
Pursue完成签到,获得积分10
12秒前
12秒前
jluzz完成签到,获得积分10
12秒前
cdercder应助likw23采纳,获得30
13秒前
紧张的金毛完成签到,获得积分10
13秒前
小明完成签到,获得积分10
13秒前
李爱国应助coolboy111采纳,获得10
13秒前
猪猪侠完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434977
求助须知:如何正确求助?哪些是违规求助? 3032325
关于积分的说明 8945524
捐赠科研通 2720321
什么是DOI,文献DOI怎么找? 1492224
科研通“疑难数据库(出版商)”最低求助积分说明 689735
邀请新用户注册赠送积分活动 685905