Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance

医学 迭代重建 图像质量 双重能量 神经组阅片室 超声波 介入放射学 放射科 血管造影 断层摄影术 计算机断层摄影术 计算机断层血管造影 医学物理学 算法 计算机视觉 人工智能 图像(数学) 计算机科学 病理 骨矿物 骨质疏松症 精神科 神经学
作者
Chenyu Jiang,Dan Jin,Zhuoheng Liu,Yan Zhang,Ming Ni,Huishu Yuan
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:13 (1) 被引量:12
标识
DOI:10.1186/s13244-022-01308-2
摘要

Abstract Objectives To evaluate image quality and diagnostic performance of carotid dual-energy computed tomography angiography (DECTA) using deep learning image reconstruction (DLIR) compared with images using adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Carotid DECTA datasets of 28 consecutive patients were reconstructed at 50 keV using DLIR at low, medium, and high levels (DLIR-L, DLIR-M, and DLIR-H) and 80% ASIR-V algorithms. Mean attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at different levels of arteries were measured and calculated. Image quality for noise and texture, depiction of arteries, and diagnostic performance toward carotid plaques were assessed subjectively by two radiologists. Quantitative and qualitative parameters were compared between the ASIR-V, DLIR-L, DLIR-M, and DLIR-H groups. Results The image noise at aorta and common carotid artery, SNR, and CNR at all level arteries of DLIR-H images were significantly higher than those of ASIR-V images ( p = 0.000–0.040). The quantitative analysis of DLIR-L and DLIR-M showed comparable denoise capability with ASIR-V. The overall image quality ( p = 0.000) and image noise ( p = 0.000–0.014) were significantly better in the DLIR-M and DLIR-H images. The image texture was improved by DLR at all level compared to ASIR-V images ( p = 0.000–0.008). Depictions of head and neck arteries and diagnostic performance were comparable between four groups ( p > 0.05). Conclusions Compared with 80% ASIR-V, we recommend DLIR-H for clinical carotid DECTA reconstruction, which can significantly improve the image quality of carotid DECTA at 50 keV but maintain a desirable diagnostic performance and arterial depiction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助10
刚刚
欢喜的心情完成签到,获得积分10
刚刚
1秒前
乔乔完成签到,获得积分10
1秒前
lu777发布了新的文献求助50
1秒前
EBA完成签到,获得积分10
1秒前
tuanheqi应助勾陈一采纳,获得150
1秒前
utgu完成签到,获得积分10
2秒前
21GolDiamond完成签到,获得积分10
2秒前
烟花应助someone采纳,获得10
2秒前
abc123完成签到,获得积分10
3秒前
薏米人儿发布了新的文献求助10
3秒前
爱自己就好完成签到,获得积分10
3秒前
万能图书馆应助zy采纳,获得10
3秒前
汉堡包应助岸边渔客采纳,获得10
4秒前
乔乔发布了新的文献求助10
4秒前
微笑完成签到,获得积分20
4秒前
李爱国应助山猪吃细糠采纳,获得10
4秒前
yaaabo发布了新的文献求助10
5秒前
柒_l完成签到,获得积分10
5秒前
joker完成签到,获得积分10
5秒前
5秒前
6秒前
科研蚂蚁完成签到,获得积分10
6秒前
duizhang发布了新的文献求助10
7秒前
共享精神应助houjibofa采纳,获得50
7秒前
tiger完成签到,获得积分10
8秒前
8秒前
8秒前
小二郎应助loraine采纳,获得10
8秒前
8秒前
8秒前
平淡的谷蓝完成签到,获得积分10
9秒前
香蕉觅云应助黑粉头头采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
小米完成签到,获得积分20
10秒前
10秒前
重要书文完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969322
求助须知:如何正确求助?哪些是违规求助? 3514152
关于积分的说明 11172188
捐赠科研通 3249407
什么是DOI,文献DOI怎么找? 1794832
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804781