亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset

波函数 水准点(测量) 哈密顿量(控制论) 量子化学 密度泛函理论 计算机科学 量子 功能(生物学) 统计物理学 一般化 航程(航空) 计算复杂性理论 比例(比率) 分子 计算化学 算法 化学 量子力学 物理 数学 数学优化 材料科学 超分子化学 生物 数学分析 进化生物学 复合材料 大地测量学 地理
作者
Kuzma Khrabrov,Ilya Shenbin,Alexander Ryabov,Artem Tsypin,Alexander Telepov,Anton Alekseev,Alexander Grishin,П. В. Страшнов,Petr Zhilyaev,Sergey I. Nikolenko,Artur Kadurin
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (42): 25853-25863 被引量:2
标识
DOI:10.1039/d2cp03966d
摘要

Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry完成签到 ,获得积分10
3秒前
带点脑子读研求求你了完成签到 ,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
上官若男应助大晨采纳,获得10
51秒前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
1分钟前
你好发布了新的文献求助10
1分钟前
科目三应助你好采纳,获得10
1分钟前
Danta发布了新的文献求助10
2分钟前
2分钟前
ziyue发布了新的文献求助10
2分钟前
2分钟前
大晨发布了新的文献求助10
2分钟前
2分钟前
river_121发布了新的文献求助10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
大模型应助1123048683wm采纳,获得10
2分钟前
mxczsl完成签到,获得积分10
3分钟前
3分钟前
3分钟前
腰突患者的科研完成签到,获得积分10
3分钟前
思源应助大晨采纳,获得10
4分钟前
tianshanfeihe完成签到 ,获得积分10
5分钟前
xhsz1111完成签到 ,获得积分10
5分钟前
wakawaka完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
寂寞致幻发布了新的文献求助20
7分钟前
DONG发布了新的文献求助10
7分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
知闲发布了新的文献求助10
7分钟前
SUNny完成签到 ,获得积分10
8分钟前
寂寞致幻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
KYTQQ完成签到 ,获得积分10
9分钟前
小青年儿完成签到 ,获得积分10
10分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221