nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset

波函数 水准点(测量) 哈密顿量(控制论) 量子化学 密度泛函理论 计算机科学 量子 功能(生物学) 统计物理学 一般化 航程(航空) 计算复杂性理论 比例(比率) 分子 计算化学 算法 化学 量子力学 物理 数学 数学优化 材料科学 超分子化学 生物 数学分析 进化生物学 复合材料 大地测量学 地理
作者
Kuzma Khrabrov,Ilya Shenbin,Alexander Ryabov,Artem Tsypin,Alexander Telepov,Anton Alekseev,Alexander Grishin,П. В. Страшнов,Petr Zhilyaev,Sergey I. Nikolenko,Artur Kadurin
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (42): 25853-25863 被引量:2
标识
DOI:10.1039/d2cp03966d
摘要

Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aldeheby应助闷声发采纳,获得10
1秒前
ljy1111发布了新的文献求助10
1秒前
1秒前
1秒前
泅渡完成签到,获得积分20
2秒前
vigor完成签到 ,获得积分10
2秒前
2秒前
3秒前
逗逗发布了新的文献求助10
3秒前
orixero应助Iris采纳,获得10
3秒前
3秒前
鹅鹅完成签到 ,获得积分10
3秒前
hard完成签到,获得积分10
4秒前
CocoGabrielle完成签到,获得积分10
4秒前
4秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
5秒前
ABC的FGH发布了新的文献求助10
5秒前
5秒前
思源应助韩妙采纳,获得10
5秒前
研友_8yN60L完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
子晏发布了新的文献求助10
7秒前
wuyoucaoxin完成签到,获得积分10
8秒前
直率初露发布了新的文献求助10
8秒前
yc发布了新的文献求助10
9秒前
科研通AI2S应助lidd采纳,获得10
9秒前
fff完成签到,获得积分10
9秒前
平淡惋清发布了新的文献求助10
10秒前
10秒前
10秒前
小窝发布了新的文献求助10
10秒前
Akim应助itharmony采纳,获得10
11秒前
czt完成签到,获得积分10
11秒前
ZHa0发布了新的文献求助10
11秒前
11秒前
Selina完成签到 ,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342