A survey of identity recognition via data fusion and feature learning

计算机科学 身份(音乐) 特征(语言学) 传感器融合 模式识别(心理学) 人工智能 融合 测量数据收集 机器学习 数学 哲学 语言学 物理 声学 统计
作者
Zhen Qin,Pengbiao Zhao,Tianming Zhuang,Fuhu Deng,Yi Ding,Dajiang Chen
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 694-712 被引量:34
标识
DOI:10.1016/j.inffus.2022.10.032
摘要

With the rapid development of the Mobile Internet and the Industrial Internet of Things, a variety of applications put forward an urgent demand for user and device identity recognition. Digital identity with hidden characteristics is essential for both individual users and physical devices. With the assistance of multimodalities as well as fusion strategies, identity recognition can be more reliable and robust. In this survey, we turn to investigate the concepts and limitations of unimodal identity recognition, the motivation, and advantages of multimodal identity recognition, and summarize the recognition technologies and applications via feature level, match score level, decision level, and rank level data fusion strategies. Additionally, we also discuss the security concerns and future research orientations of learning-based identity recognition, which enables researchers to achieve a better understanding of the current status of this field and select future research directions. This survey summarizes and expands the fusion processing technologies and methods for multi-source and multimodality data, and provides theoretical support for their applications in complicated scenarios. In addition, it enables researchers to achieve a better understanding of the current research status of this field and select proper future research directions. • User identity recognition by leveraging physiological and behavioral biometrics. • Device identity recognition by leveraging physical fingerprint. • Multi-modality data fusion strategies by combining multi-level semantic information. • Security concerns and future work towards learning-based identity recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助aojuan采纳,获得10
刚刚
昵称发布了新的文献求助10
刚刚
ZSWAA发布了新的文献求助10
刚刚
刚刚
jane应助cola采纳,获得10
2秒前
阳光襄完成签到,获得积分20
3秒前
无限雨南发布了新的文献求助10
3秒前
一一发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
6秒前
幽默雨完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
逆游的鱼完成签到,获得积分10
8秒前
8秒前
9秒前
积极的仙人柱完成签到,获得积分10
9秒前
alick发布了新的文献求助10
10秒前
小姜发布了新的文献求助10
10秒前
凉白开144发布了新的文献求助10
11秒前
CodeCraft应助UTMOST采纳,获得10
11秒前
昵称完成签到,获得积分10
11秒前
zhenghua发布了新的文献求助10
11秒前
zhu发布了新的文献求助10
12秒前
12秒前
wangyr11发布了新的文献求助10
13秒前
14秒前
14秒前
mh发布了新的文献求助10
14秒前
16秒前
16秒前
小蘑菇应助Loik采纳,获得10
16秒前
许中原完成签到,获得积分10
16秒前
16秒前
小马甲应助老迟到的硬币采纳,获得10
17秒前
17秒前
wanci应助钦川采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
读者个体因素对汉语阅读中眼动行为的影响 710
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560199
求助须知:如何正确求助?哪些是违规求助? 3134388
关于积分的说明 9407104
捐赠科研通 2834515
什么是DOI,文献DOI怎么找? 1558139
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716582