清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Point of Care Prediction of Maternal Admission to the Intensive Care Unit Using Machine Learning

医学 重症监护室 急诊医学 缺少数据 机器学习 重症监护医学 计算机科学
作者
Reetam Ganguli,Megha Gupta,Katie Anderson,Stephen Wagner
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:228 (1): S216-S216
标识
DOI:10.1016/j.ajog.2022.11.402
摘要

Over 90% of maternal mortality occurs in wards/outpatient areas without Intensive Care Unit (ICU) utilization; delays in assessing maternal critical illness cause underutilization of the ICU. Despite this, few advanced prediction models exist to prognose ICU admission risk and existing models have low accuracy/recall. Flagging high risk patients, ahead of critical complications, signals healthcare providers to alter clinical management, improve provider coordination, and allow proper utilization of ICU services when indicated, improving patient outcomes. We develop machine learning (ML) models, trained on data available at the point of care, like patient demographics and clinical history, to predict maternal ICU admission risk. Patients from 2018-2020 in the U.S. Vital Statistics dataset without missing data met inclusion criteria for the study. Any variables with over 50% missing values and any clinical variables accessible during/after the intrapartum period were discarded to allow the model to predict solely on point-of-care variables. An extreme gradient boosting ML model was developed on the data, and a Bayesian Tree-Structured Parzen Estimator algorithm was utilized to optimize hyperparameters. The model was trained on patients from 2018- 2019 and was tested on a hold-out set of patients from 2020. 51 clinical parameters for 5,352,142 obstetric patients from the 2018-2019 years were included in the training data, of which 7,351 were admitted to the ICU. The model was tested on 2,574,457 patients from the 2020 year, of which 3,346 patients were admitted to the ICU. The extreme gradient boosting model had an AUC ROC of 0.78 (95% CI: 0.77-0.79), an accuracy of 99.89% (95% CI: 99.88%-99.89%) with 71.4% recall after threshold tuning. Hyperparameter optimized ML methods can predict maternal ICU admission with high accuracy discrimination ability. Our model paves the way for translating obstetrical data into a clinical platform with personalized risk scores to guide clinical management and potentially improve outcomes at the point of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得10
1秒前
1秒前
Rayoo发布了新的文献求助10
5秒前
Benhnhk21发布了新的文献求助10
11秒前
Rayoo完成签到,获得积分10
17秒前
17秒前
小新小新完成签到 ,获得积分10
20秒前
22秒前
徐进完成签到,获得积分10
24秒前
34秒前
平常的三问完成签到 ,获得积分10
35秒前
hyl-tcm完成签到 ,获得积分10
41秒前
诺贝尔候选人完成签到 ,获得积分10
41秒前
45秒前
Skywalk满天星完成签到,获得积分10
45秒前
桥西小河完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
整齐的雪旋应助Benhnhk21采纳,获得10
2分钟前
Yolenders完成签到 ,获得积分10
2分钟前
kkk完成签到 ,获得积分10
2分钟前
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
ding应助real采纳,获得10
3分钟前
隐形松完成签到 ,获得积分10
3分钟前
感性的神级完成签到,获得积分10
3分钟前
明天完成签到,获得积分10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
庄海棠完成签到 ,获得积分10
3分钟前
xue112完成签到 ,获得积分10
4分钟前
江三村完成签到 ,获得积分10
4分钟前
001完成签到 ,获得积分10
4分钟前
4分钟前
jlwang完成签到,获得积分10
4分钟前
Shun完成签到 ,获得积分10
4分钟前
zlx完成签到 ,获得积分10
4分钟前
ww完成签到,获得积分10
5分钟前
猪猪完成签到 ,获得积分10
5分钟前
牧沛凝完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839