A dynamic lane-changing decision and trajectory planning model of autonomous vehicles under mixed autonomous vehicle and human-driven vehicle environment

弹道 过程(计算) 计算机科学 适应性 平面图(考古学) 模拟 历史 生态学 物理 考古 天文 生物 操作系统
作者
Yuewen Yu,Xia Luo,Qiming Su,Weikang Peng
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:609: 128361-128361 被引量:14
标识
DOI:10.1016/j.physa.2022.128361
摘要

How to complete a lane changing process considering various variables has always been a critical issue in the field of autonomous driving. Developing a lane-changing decision model with full consideration of the surrounding vehicles and related decision-based trajectory planning model that comprehensively weighs safety and efficiency are conducive to the driving of autonomous vehicles (AVs) under mixed autonomous vehicle and human-driven vehicle (AV–HV) environment. Under the mixed AV–HV environment, we optimize a multi-player dynamic game model considering the status of surrounding vehicles to ensure the accurate execution of lane-changing decision of AVs. Lane changing trajectory of AV is planned based on polynomial curves, which can be dynamically updated according to the real-time status of vehicles and game results. Then, a computational experiment basing on the lane changing vehicles data from NGSIM (Next Generation Simulation) is performed with proposed models. The simulation results show that the lane-changing decision and trajectory planning model developed in our research have good adaptability to lane changing process in different scenarios, which can effectively measure the driving intention of surrounding vehicles and dynamically plan a smooth trajectory line considering safety and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
4秒前
5秒前
搜集达人应助芝麻采纳,获得10
6秒前
lalala完成签到,获得积分10
6秒前
keke发布了新的文献求助10
7秒前
Cc发布了新的文献求助10
9秒前
11秒前
11秒前
mxy发布了新的文献求助10
11秒前
18秒前
英勇绮南完成签到,获得积分10
19秒前
HHHHHJ完成签到,获得积分10
20秒前
22秒前
23秒前
23秒前
26秒前
26秒前
852应助橙子采纳,获得10
27秒前
27秒前
scienceL完成签到,获得积分10
28秒前
敏感初露发布了新的文献求助10
30秒前
等风来发布了新的文献求助10
31秒前
彳亍1117应助keke采纳,获得10
31秒前
32秒前
英俊的铭应助加油鸭采纳,获得10
33秒前
Joe完成签到,获得积分20
34秒前
34秒前
WYR发布了新的文献求助10
35秒前
35秒前
35秒前
petli发布了新的文献求助10
37秒前
37秒前
gg发布了新的文献求助10
38秒前
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053