呋喃西林
化学
水溶液
猝灭(荧光)
选择性
组合化学
检出限
荧光
有机化学
色谱法
催化作用
量子力学
医学
物理
传统医学
作者
Weize Wang,Fan Yang,Yuchen Yang,Yao‐Yu Wang,Bo Liu
标识
DOI:10.1021/acs.jafc.2c05780
摘要
Overuse of nitenpyram and nitrofurazone in agricultural products poses enormous risks to ecosystems, and effective detection and quantification of these residual pollutants are of great concern. Although several strategies have been established for detecting nitenpyram and nitrofurazone in water, searching for a new sensor material with great sensitivity, selectivity, and recyclability remains challenging. Here, we design and synthesize a stable metal-organic framework (MOF) (Zn-CPTA) by employing an organic linker based on the coordination features of benzene-1,4-dicarboxylate and picolinic acid. Zn-CPTA is a 3D framework built from Zn-O-Zn chains called rod secondary building units, which contains 1D open channels modified by uncoordinated carboxyl O atoms and exhibits impressive chemical stability in aqueous solutions within a pH range from 2 to 12. Especially, fluorescent Zn-CPTA can quickly and sensitively detect nitenpyram and nitrofurazone in aqueous solutions with a high quenching constant and low detection limit (LOD) (KSV values for nitenpyram and nitrofurazone are 1.67 × 104 and 1.02 × 105 M-1 with LOD of 0.625 and 0.126 μM, respectively), as well as outstanding selectivity and recyclability. Notably, the LOD value is the lowest among the reported MOFs used for nitrofurazone detection. Besides, experiments and density functional theory calculations are combined to explain the quenching mechanism. Finally, the practical application of Zn-CPTA was further explored in real environment samples with satisfactory recoveries.
科研通智能强力驱动
Strongly Powered by AbleSci AI