Fusion of Quality Evaluation Metrics and Convolutional Neural Network Representations for ROI Filtering in LC–MS

人工智能 卷积神经网络 计算机科学 假阳性悖论 假阳性率 模式识别(心理学) 感兴趣区域 机器学习 数据挖掘
作者
Hailiang Zhang,Zhenbo Xu,Xiaqiong Fan,Yue Wang,Jing Wang,Jinyu Sun,Ming Wen,Xiao Kang,Zhimin Zhang,Hongmei Lü
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.2c01398
摘要

Region of interest (ROI) extraction is a fundamental step in analyzing metabolomic datasets acquired by liquid chromatography–mass spectrometry (LC–MS). However, noises and backgrounds in LC–MS data often affect the quality of extracted ROIs. Therefore, developing effective ROI evaluation algorithms is necessary to eliminate false positives meanwhile keep the false-negative rate as low as possible. In this study, a deep fused filter of ROIs (dffROI) was proposed to improve the accuracy of ROI extraction by combining the handcrafted evaluation metrics with convolutional neural network (CNN)-learned representations. To evaluate the performance of dffROI, dffROI was compared with peakonly (CNN-learned representation) and five handcrafted metrics on three LC–MS datasets and a gas chromatography–mass spectrometry (GC–MS) dataset. Results show that dffROI can achieve higher accuracy, better true-positive rate, and lower false-positive rate. Its accuracy, true-positive rate, and false-positive rate are 0.9841, 0.9869, and 0.0186 on the test set, respectively. The classification error rate of dffROI (1.59%) is significantly reduced compared with peakonly (2.73%). The model-agnostic feature importance demonstrates the necessity of fusing handcrafted evaluation metrics with the convolutional neural network representations. dffROI is an automatic, robust, and universal method for ROI filtering by virtue of information fusion and end-to-end learning. It is implemented in Python programming language and open-sourced at https://github.com/zhanghailiangcsu/dffROI under BSD License. Furthermore, it has been integrated into the KPIC2 framework previously proposed by our group to facilitate real metabolomic LC–MS dataset analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangying完成签到,获得积分20
刚刚
高贵花瓣应助Steven采纳,获得10
1秒前
2秒前
免疫与代谢研究完成签到,获得积分10
2秒前
MWT驳回了VDC应助
3秒前
细腻的沂完成签到,获得积分10
3秒前
万能图书馆应助ddddd采纳,获得10
3秒前
4秒前
冯梦梦完成签到 ,获得积分10
4秒前
小马甲应助baolongzhan采纳,获得10
5秒前
大仙完成签到,获得积分10
5秒前
5秒前
6秒前
一切顺利完成签到,获得积分10
7秒前
来自3602完成签到,获得积分10
8秒前
hzk发布了新的文献求助10
8秒前
8秒前
8秒前
静香发布了新的文献求助10
9秒前
多情的静槐完成签到 ,获得积分10
9秒前
9秒前
自由可乐应助体贴书竹采纳,获得30
10秒前
cyhccc完成签到,获得积分10
10秒前
暴走完成签到 ,获得积分10
10秒前
吉绿柳完成签到,获得积分10
10秒前
ronnie完成签到,获得积分10
11秒前
sandra完成签到,获得积分10
11秒前
安静一兰发布了新的文献求助30
12秒前
外向的雁玉完成签到,获得积分10
12秒前
12秒前
一颗红葡萄完成签到 ,获得积分10
12秒前
13秒前
honey完成签到,获得积分10
13秒前
缓慢平蓝完成签到,获得积分10
15秒前
baolongzhan发布了新的文献求助10
16秒前
17秒前
19秒前
子车茗应助江南之南采纳,获得20
20秒前
丑角苏发布了新的文献求助10
20秒前
ddddd完成签到 ,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625