亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised medical image feature learning by using de-melting reduction auto-encoder

计算机科学 人工智能 模式识别(心理学) 特征学习 稳健性(进化) 特征(语言学) 无监督学习 特征提取 编码器 背景(考古学) 聚类分析 机器学习 操作系统 基因 哲学 古生物学 生物 化学 生物化学 语言学
作者
Yu Sun,Jinyu Cong,Kuixing Zhang,Muwei Jian,Benzheng Wei
出处
期刊:Neurocomputing [Elsevier]
卷期号:523: 145-156 被引量:5
标识
DOI:10.1016/j.neucom.2022.12.017
摘要

Unsupervised feature learning is a fundamental and highly prioritized problem in medical image analysis. Although it has shown considerable improvements, it remains challenging because of its weak feature expression ability, low model-learning efficiency, and weak robustness. To address these limitations, a novel unsupervised feature learning method in the medical image classification task, named de-melting reduction auto-encoder (DMRAE), is proposed in this study. A joint fusion network structure is constructed; it not only improves the expression of target features but also reduces the loss of feature decoding and parameters. To obtain a robust solution, a newly designed decomposed-reconstructed loss function is used to strengthen the semantic context between adjacent feature extractor layers, successfully avoiding the insufficient model-learning ability from the single optimization objective and improving the quality of the extracted features. Finally, extensive experiments on datasets consisting of 400 breast ultrasonographic images and 6000 lung computed tomography images are conducted to demonstrate the effectiveness of the proposed method. Experimental results reveal that the DMRAE significantly reduces the annotation effort and outperforms existing methods by a significant margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
tutu完成签到,获得积分10
41秒前
傻傻的哈密瓜完成签到,获得积分10
45秒前
45秒前
共享精神应助科研通管家采纳,获得10
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助30
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
彭于晏应助SSS采纳,获得10
1分钟前
1分钟前
SSS发布了新的文献求助10
1分钟前
2分钟前
SSS完成签到,获得积分10
2分钟前
yang发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
nolan完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817003
关于积分的说明 15080857
捐赠科研通 4816417
什么是DOI,文献DOI怎么找? 2577345
邀请新用户注册赠送积分活动 1532342
关于科研通互助平台的介绍 1490952