Classical versus reinforcement learning algorithms for unmanned aerial vehicle network communication and coverage path planning: A systematic literature review

计算机科学 运动规划 路径(计算) 强化学习 算法 人工智能 任意角度路径规划 运筹学 机器学习 机器人 计算机网络 数学
作者
Abdul Mannan,Mohammad S. Obaidat,Khalid Mahmood,Aftab Ahmad,Rodina Ahmad
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:36 (5) 被引量:8
标识
DOI:10.1002/dac.5423
摘要

Summary The unmanned aerial vehicle network communication includes all points of interest during the coverage path planning. Coverage path planning in such networks is crucial for many applications, such as surveying, monitoring, and disaster management. Since the coverage path planning belongs to NP‐hard issues, researchers in this domain are constantly looking for optimal solutions for this task. The speed, direction, altitude, environmental variations, and obstacles make coverage path planning more difficult. Researchers have proposed numerous algorithms regarding coverage path planning. In this study, we examined and discussed existing state‐of‐the‐art coverage path planning algorithms. We divided the existing techniques into two core categories: Classical and reinforcement learning. The classical algorithms are further divided into subcategories due to the availability of considerable variations in this category. For each algorithm in both types, we examined the issues of mobility, altitude, and characteristics of known and unknown environments. We also discuss the optimality of different algorithms. At the end of each section, we discuss the existing research gaps and provide future insights to overcome those gaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助limz采纳,获得10
7秒前
NexusExplorer应助limz采纳,获得10
7秒前
10秒前
Suyi完成签到,获得积分10
11秒前
pluto应助科研通管家采纳,获得10
16秒前
16秒前
叮叮当应助科研通管家采纳,获得20
16秒前
Lumos发布了新的文献求助10
16秒前
4399com应助科研通管家采纳,获得10
16秒前
16秒前
Tututiyt完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
limz完成签到,获得积分10
21秒前
所所应助电致阿光采纳,获得10
21秒前
keyanseng发布了新的文献求助10
23秒前
传奇3应助学术山芋采纳,获得30
24秒前
贺知书发布了新的文献求助10
24秒前
Monster发布了新的文献求助10
25秒前
消潇发布了新的文献求助30
27秒前
彭剑封完成签到,获得积分20
27秒前
二十二完成签到 ,获得积分10
28秒前
月亮邮递员完成签到,获得积分10
28秒前
31秒前
YOOO完成签到,获得积分10
32秒前
李剑鸿发布了新的文献求助100
32秒前
lulu完成签到 ,获得积分10
32秒前
33秒前
Lycerdoctor完成签到 ,获得积分10
34秒前
明月心发布了新的文献求助10
34秒前
阿明发布了新的文献求助10
36秒前
36秒前
研友_ngqxV8完成签到,获得积分0
37秒前
Monster完成签到,获得积分10
37秒前
38秒前
hanyang965发布了新的文献求助10
38秒前
乐乐应助shmily采纳,获得30
38秒前
41秒前
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462