Parallel Driving with Big Models and Foundation Intelligence in Cyber–Physical–Social Spaces

计算机科学 构造(python库) 大数据 基石 基础(证据) 具身认知 信息物理系统 空格(标点符号) 数据科学 人工智能 通用人工智能 人机交互 操作系统 艺术 视觉艺术 考古 程序设计语言 历史
作者
Xiao Wang,Jun Huang,Yonglin Tian,Chen Sun,Lie Yang,Shanhe Lou,Chen Lv,Changyin Sun,Fei Wang
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:7 被引量:3
标识
DOI:10.34133/research.0349
摘要

Recent years have witnessed numerous technical breakthroughs in connected and autonomous vehicles (CAVs). On the one hand, these breakthroughs have significantly advanced the development of intelligent transportation systems (ITSs); on the other hand, these new traffic participants introduce more complex and uncertain elements to ITSs from the social space. Digital twins (DTs) provide real-time, data-driven, precise modeling for constructing the digital mapping of physical-world ITSs. Meanwhile, the metaverse integrates emerging technologies such as virtual reality/mixed reality, artificial intelligence, and DTs to model and explore how to realize improved sustainability, increased efficiency, and enhanced safety. More recently, as a leading effort toward general artificial intelligence, the concept of foundation model was proposed and has achieved significant success, showing great potential to lay the cornerstone for diverse artificial intelligence applications across different domains. In this article, we explore the big models embodied foundation intelligence for parallel driving in cyber-physical-social spaces, which integrate metaverse and DTs to construct a parallel training space for CAVs, and present a comprehensive elucidation of the crucial characteristics and operational mechanisms. Beyond providing the infrastructure and foundation intelligence of big models for parallel driving, this article also discusses future trends and potential research directions, and the "6S" goals of parallel driving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
真是麻烦完成签到 ,获得积分10
1秒前
3秒前
4秒前
wengjiaqi发布了新的文献求助10
5秒前
TAO发布了新的文献求助10
5秒前
领导范儿应助ikun采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
小黄完成签到,获得积分20
7秒前
zhangzhang完成签到,获得积分10
8秒前
阿诺德发布了新的文献求助10
8秒前
9秒前
风国之境完成签到,获得积分10
9秒前
Jasper应助淅淅沥沥采纳,获得10
9秒前
科研通AI5应助畅快芝麻采纳,获得10
9秒前
NexusExplorer应助TAO采纳,获得10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
19秒前
20秒前
Saturn完成签到,获得积分10
20秒前
zhangzhang发布了新的文献求助10
22秒前
23秒前
量子星尘发布了新的文献求助10
26秒前
bathygobius完成签到,获得积分10
26秒前
搜集达人应助小苏采纳,获得10
26秒前
香蕉觅云应助未来采纳,获得10
27秒前
28秒前
传奇3应助cs采纳,获得10
28秒前
wanci应助debu9采纳,获得10
28秒前
LLQ完成签到,获得积分20
29秒前
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
布布应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660657
求助须知:如何正确求助?哪些是违规求助? 3221940
关于积分的说明 9742294
捐赠科研通 2931235
什么是DOI,文献DOI怎么找? 1604908
邀请新用户注册赠送积分活动 757618
科研通“疑难数据库(出版商)”最低求助积分说明 734461