Multi-objective optimization of CO2 ejector by combined significant variables recognition, ANN surrogate model and multi-objective genetic algorithm

喷油器 分类 夹带(生物音乐学) 多目标优化 遗传算法 Lift(数据挖掘) 计算机科学 制冷 工程类 算法 数学 数学优化 机械工程 机器学习 哲学 节奏 美学
作者
Guangdi Liu,Liang Pu,Hongxia Zhao,Zhuang Chen,Guangpeng Li
出处
期刊:Energy [Elsevier]
卷期号:295: 131010-131010 被引量:4
标识
DOI:10.1016/j.energy.2024.131010
摘要

The ejectors are crucial in enhancing the efficiency of the CO2-based refrigeration cycle. Although the ejector can be optimized by experimental and computational fluid dynamic simulation to improve its performance, these methods are time-consuming and complicated. This research aims to present a fast and systematic approach for optimizing CO2 ejector by combining variance analysis, surrogate model, and non-dominated sorting genetic algorithm. Firstly, the key geometric structures affecting the performance of ejector were determined by variance analysis. Secondly, the influence of key geometric structures and boundary conditions on ejector efficiency and entrainment ratio was analyzed by using computational fluid dynamic simulation, and the database was generated. Next, the artificial neural network surrogate model was established to forecast the ejector performance. Finally, the non-dominated sorting genetic algorithm was involved to optimize the ejector for maximizing ejector efficiency and entrainment ratio. The results show that the efficiencies of the optimized ejectors are above 42%, and the entrainment ratios exceed 0.7. Compared with the basic model, the average efficiencies have increased about 13.20%. When the pressure lift is 0.7 MPa, the entrainment ratios of the optimized ejectors are 0.696 (−20 °C ≤ Te < −15 °C), 0.82(-15 °C ≤ Te < −5 °C), 0.60 (−5 °C ≤ Te < 5 °C) and 0.90 (5 °C ≤ Te < 15 °C), respectively. The above research demonstrates that the success of this approach in addressing time-consuming multi-optimization problems. It offers a fast and systematic approach for the multi-objective optimization of CO2 ejector as a valuable reference for engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2023AKY发布了新的文献求助10
刚刚
hanscao完成签到,获得积分20
1秒前
3秒前
大个应助合适忆之采纳,获得10
4秒前
kyt完成签到 ,获得积分10
4秒前
153发布了新的文献求助10
5秒前
科研通AI2S应助guguji采纳,获得10
5秒前
长安完成签到,获得积分10
5秒前
一杯沧海完成签到 ,获得积分10
6秒前
努力学习完成签到,获得积分10
7秒前
科研通AI2S应助miemie采纳,获得10
8秒前
11秒前
楠茸完成签到 ,获得积分10
13秒前
纯真的诗兰完成签到,获得积分10
13秒前
小西完成签到 ,获得积分10
14秒前
自信雨安完成签到 ,获得积分10
14秒前
传奇3应助hanscao采纳,获得30
15秒前
李还乱关注了科研通微信公众号
18秒前
19秒前
19秒前
小小肖完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
25秒前
酷波er应助bobo采纳,获得10
26秒前
27秒前
YY关闭了YY文献求助
28秒前
刘欢发布了新的文献求助10
29秒前
31秒前
芒果完成签到 ,获得积分10
32秒前
33秒前
bb完成签到,获得积分10
35秒前
白菜包子发布了新的文献求助10
37秒前
呜呜老婆完成签到 ,获得积分10
38秒前
小于发布了新的文献求助10
38秒前
LITAO完成签到 ,获得积分10
39秒前
Wilson完成签到 ,获得积分10
40秒前
42秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352209
求助须知:如何正确求助?哪些是违规求助? 2977519
关于积分的说明 8679749
捐赠科研通 2658470
什么是DOI,文献DOI怎么找? 1455802
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664654