已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

人工智能 点云 深度学习 计算机科学 自编码 心脏周期 云计算 机器学习 计算机视觉 心脏病学 医学 操作系统
作者
Marcel Beetz,Abhirup Banerjee,Vicente Grau
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4810-4819 被引量:3
标识
DOI:10.1109/jbhi.2024.3389871
摘要

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive ability for both cardiac contraction and relaxation on a large U.K. Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's suitability to act as a normality model of 3D cardiac mechanics and capture subpopulation-specific differences between normal subjects and myocardial infarction (MI) patients. Next, we highlight the PCD-Net's interpretability by visualizing abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jcd完成签到,获得积分20
刚刚
火翟丰丰山心完成签到 ,获得积分10
1秒前
2秒前
CikY发布了新的文献求助10
2秒前
ldgsd完成签到,获得积分10
3秒前
SuperD发布了新的文献求助10
3秒前
赵暖橙发布了新的文献求助10
3秒前
3秒前
饼子发布了新的文献求助10
6秒前
SULAIMAN发布了新的文献求助10
7秒前
闪闪冰夏完成签到,获得积分10
7秒前
不安青牛应助神经娃采纳,获得10
8秒前
温柔的斩完成签到,获得积分10
9秒前
yaswer发布了新的文献求助10
9秒前
闪闪冰夏发布了新的文献求助30
12秒前
Ava应助结实的荷采纳,获得10
14秒前
hala安胖胖完成签到,获得积分10
15秒前
静鸭发布了新的文献求助10
16秒前
syk关注了科研通微信公众号
18秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得30
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得30
20秒前
20秒前
科目三应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
26秒前
cabbage008完成签到,获得积分10
26秒前
昨夜星辰メ完成签到 ,获得积分0
27秒前
28秒前
外Y发布了新的文献求助10
28秒前
Mia关闭了Mia文献求助
29秒前
larder完成签到 ,获得积分10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248551
求助须知:如何正确求助?哪些是违规求助? 2891977
关于积分的说明 8269308
捐赠科研通 2560053
什么是DOI,文献DOI怎么找? 1388842
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798