亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

人工智能 点云 深度学习 计算机科学 自编码 心脏周期 云计算 机器学习 计算机视觉 心脏病学 医学 操作系统
作者
Marcel Beetz,Abhirup Banerjee,Vicente Grau
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4810-4819 被引量:4
标识
DOI:10.1109/jbhi.2024.3389871
摘要

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive ability for both cardiac contraction and relaxation on a large U.K. Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's suitability to act as a normality model of 3D cardiac mechanics and capture subpopulation-specific differences between normal subjects and myocardial infarction (MI) patients. Next, we highlight the PCD-Net's interpretability by visualizing abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shaw完成签到 ,获得积分10
刚刚
方梦坤完成签到,获得积分10
1秒前
拿铁小笼包完成签到,获得积分10
2秒前
古月完成签到,获得积分10
5秒前
8秒前
10秒前
11秒前
小贱牛发布了新的文献求助10
13秒前
Zyc发布了新的文献求助10
15秒前
16秒前
Geass发布了新的文献求助10
23秒前
魏佳奇完成签到 ,获得积分10
25秒前
adkdad完成签到 ,获得积分10
25秒前
liuzhen完成签到,获得积分10
26秒前
领导范儿应助Zyc采纳,获得10
27秒前
焦头鹅发布了新的文献求助30
28秒前
机智幻香完成签到 ,获得积分10
29秒前
zxe完成签到,获得积分10
38秒前
kaka完成签到,获得积分0
42秒前
46秒前
焦头鹅完成签到,获得积分20
46秒前
47秒前
49秒前
49秒前
49秒前
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
隐形曼青应助科研通管家采纳,获得10
49秒前
完美世界应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
隐形曼青应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
50秒前
50秒前
罗静发布了新的文献求助10
50秒前
Cynthia完成签到 ,获得积分10
50秒前
Zyc发布了新的文献求助10
55秒前
mingjing完成签到 ,获得积分10
58秒前
谦让白玉完成签到 ,获得积分10
1分钟前
1分钟前
彦子完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334680
求助须知:如何正确求助?哪些是违规求助? 4472727
关于积分的说明 13920704
捐赠科研通 4366744
什么是DOI,文献DOI怎么找? 2399201
邀请新用户注册赠送积分活动 1392370
关于科研通互助平台的介绍 1363268