Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

人工智能 点云 深度学习 计算机科学 自编码 心脏周期 云计算 机器学习 计算机视觉 心脏病学 医学 操作系统
作者
Marcel Beetz,Abhirup Banerjee,Vicente Grau
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4810-4819 被引量:4
标识
DOI:10.1109/jbhi.2024.3389871
摘要

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive ability for both cardiac contraction and relaxation on a large U.K. Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's suitability to act as a normality model of 3D cardiac mechanics and capture subpopulation-specific differences between normal subjects and myocardial infarction (MI) patients. Next, we highlight the PCD-Net's interpretability by visualizing abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaosengliufa完成签到,获得积分10
刚刚
英姑应助mxl采纳,获得10
刚刚
kaititongg关注了科研通微信公众号
刚刚
1秒前
藜誌发布了新的文献求助10
1秒前
1秒前
tanwenbin完成签到,获得积分10
1秒前
Qi36完成签到 ,获得积分10
1秒前
木子李发布了新的文献求助30
2秒前
1459完成签到,获得积分10
2秒前
jou完成签到,获得积分10
2秒前
甜瓜瓜发布了新的文献求助10
3秒前
金金完成签到,获得积分10
3秒前
潜伏完成签到 ,获得积分10
4秒前
帅气惜霜完成签到,获得积分10
4秒前
Ziyi_Xu完成签到,获得积分10
4秒前
愉快的雍完成签到,获得积分10
4秒前
4秒前
Justin完成签到,获得积分10
4秒前
星星会开花完成签到,获得积分10
5秒前
小羊完成签到,获得积分10
5秒前
文艺不凡完成签到 ,获得积分10
5秒前
幽默赛君完成签到 ,获得积分10
6秒前
535988发布了新的文献求助10
6秒前
XXXXH完成签到,获得积分10
6秒前
无限行之发布了新的文献求助10
7秒前
tivyg'lk完成签到,获得积分10
7秒前
负责的凌波应助甜瓜瓜采纳,获得30
7秒前
小羊学学学完成签到 ,获得积分10
8秒前
8秒前
小马完成签到,获得积分10
8秒前
潜伏关注了科研通微信公众号
9秒前
小盆呐完成签到,获得积分10
9秒前
和谐飞飞完成签到,获得积分10
9秒前
喵喵描白完成签到,获得积分10
9秒前
10秒前
公孙朝雨完成签到,获得积分10
10秒前
藜誌完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349