Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

人工智能 点云 深度学习 计算机科学 自编码 心脏周期 云计算 机器学习 计算机视觉 心脏病学 医学 操作系统
作者
Marcel Beetz,Abhirup Banerjee,Vicente Grau
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4810-4819 被引量:3
标识
DOI:10.1109/jbhi.2024.3389871
摘要

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive ability for both cardiac contraction and relaxation on a large U.K. Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's suitability to act as a normality model of 3D cardiac mechanics and capture subpopulation-specific differences between normal subjects and myocardial infarction (MI) patients. Next, we highlight the PCD-Net's interpretability by visualizing abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkf完成签到,获得积分10
3秒前
wangjw发布了新的文献求助10
3秒前
蓝豆子发布了新的文献求助10
5秒前
LL666完成签到 ,获得积分10
6秒前
Mint完成签到,获得积分10
7秒前
KKKKKKK完成签到 ,获得积分10
8秒前
Artemisia完成签到,获得积分10
10秒前
Joyce完成签到,获得积分10
10秒前
自然的南露完成签到 ,获得积分10
10秒前
pcr163应助乐沃梦2采纳,获得50
11秒前
Danish完成签到,获得积分10
15秒前
Aha完成签到 ,获得积分10
17秒前
SGLWG完成签到 ,获得积分10
20秒前
luanzhaohui完成签到,获得积分10
23秒前
25秒前
情怀应助zzh采纳,获得10
26秒前
27秒前
xdy完成签到 ,获得积分10
27秒前
马上毕业发布了新的文献求助10
31秒前
淙淙柔水完成签到,获得积分0
33秒前
qingzhiwu完成签到,获得积分10
34秒前
34秒前
来自三百完成签到 ,获得积分10
34秒前
文献完成签到,获得积分10
35秒前
35秒前
35秒前
38秒前
41秒前
linya完成签到,获得积分20
42秒前
zzh发布了新的文献求助10
42秒前
慕青应助饼大王采纳,获得10
44秒前
九九发布了新的文献求助10
44秒前
传奇3应助欣欣然采纳,获得10
46秒前
47秒前
Jasper应助悲伤实验民工采纳,获得10
48秒前
50秒前
桀桀桀完成签到,获得积分20
52秒前
今后应助科研通管家采纳,获得10
53秒前
典雅问寒应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701472
求助须知:如何正确求助?哪些是违规求助? 3251710
关于积分的说明 9875917
捐赠科研通 2963673
什么是DOI,文献DOI怎么找? 1625233
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742608