Information Monitoring and Adaptive Information Fusion of Multisource Fusion Navigation Systems in Complex Environments

计算机科学 卡尔曼滤波器 稳健性(进化) 导航系统 传感器融合 协方差 惯性导航系统 全球导航卫星系统应用 实时计算 指南针 协方差交集 扩展卡尔曼滤波器 数据挖掘 人工智能 全球定位系统 电信 生物化学 化学 统计 物理 数学 地图学 量子力学 基因 惯性参考系 地理
作者
Huijun Zhao,Jun Liu,Xuemei Chen,Huiliang Cao,Chenguang Wang,Jie Li,Chong Shen,Jun Tang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (14): 25047-25056 被引量:4
标识
DOI:10.1109/jiot.2024.3391872
摘要

Accurately obtaining the navigation information of the device is crucial for realizing various emerging Internet of Things (IoT) applications, and a multi-source fusion navigation system is the key to achieving this goal. A distributed integrated inertial navigation system (INS), polarization compass (PC), and geomagnetic compass (MAG) enhanced direction approach is presented to improve the accuracy and robustness of the multisource fusion navigation system in complex environments. To estimate the time-varying measurement noise covariance in a nonlinear multi-source fusion navigation system, the traditional federated Kalman filter (FKF) is improved. In the FKF framework, the third-order spherical radial cubature rule and variational Bayesian theory are introduced, and a variational Bayesian federated cubature Kalman filter (VBFCKF) is proposed. Furthermore, a distributed information monitoring and compensation algorithm based on residuals is developed to address issues like anomalous measured values and asynchronous multi-rate problems. Finally, an experimental platform for unmanned vehicle navigation is designed, and the tests are conducted to confirm the efficacy of the suggested approach. The experimental results show that the system can precisely estimate values based on the measurement quality of sub-filters during navigation. It effectively adjusts measurement noise covariance during updates, thereby mitigating the negative impact of interferences like occlusions and electromagnetic noise on the multi-source fusion navigation system in complex environments. This can strengthen the accuracy and robustness of the navigation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syy完成签到,获得积分10
1秒前
玖颜发布了新的文献求助10
1秒前
机智念芹发布了新的文献求助10
2秒前
letter完成签到,获得积分10
3秒前
3秒前
啊猹发布了新的文献求助10
3秒前
搜集达人应助李灏江采纳,获得10
8秒前
wanci应助阔达的盼海采纳,获得10
8秒前
爱笑的访梦完成签到,获得积分10
9秒前
donal完成签到,获得积分10
9秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
Ricey应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Lc应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
木木木木完成签到,获得积分10
11秒前
Akim应助科研通管家采纳,获得20
11秒前
Angenstern完成签到 ,获得积分10
11秒前
林临林应助科研通管家采纳,获得30
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
bkagyin应助honglingjing采纳,获得10
13秒前
希望天下0贩的0应助donal采纳,获得10
14秒前
CipherSage应助玖颜采纳,获得10
15秒前
16秒前
共享精神应助机智念芹采纳,获得10
16秒前
管歌发布了新的文献求助10
16秒前
啊猹完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993660
求助须知:如何正确求助?哪些是违规求助? 3534375
关于积分的说明 11265355
捐赠科研通 3274133
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712