Information Monitoring and Adaptive Information Fusion of Multisource Fusion Navigation Systems in Complex Environments

计算机科学 卡尔曼滤波器 稳健性(进化) 导航系统 传感器融合 协方差 惯性导航系统 全球导航卫星系统应用 实时计算 指南针 协方差交集 扩展卡尔曼滤波器 数据挖掘 人工智能 全球定位系统 电信 生物化学 化学 统计 物理 数学 地图学 量子力学 基因 惯性参考系 地理
作者
Huijun Zhao,Jun Liu,Xuemei Chen,Huiliang Cao,Chenguang Wang,Jie Li,Chong Shen,Jun Tang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (14): 25047-25056 被引量:4
标识
DOI:10.1109/jiot.2024.3391872
摘要

Accurately obtaining the navigation information of the device is crucial for realizing various emerging Internet of Things (IoT) applications, and a multi-source fusion navigation system is the key to achieving this goal. A distributed integrated inertial navigation system (INS), polarization compass (PC), and geomagnetic compass (MAG) enhanced direction approach is presented to improve the accuracy and robustness of the multisource fusion navigation system in complex environments. To estimate the time-varying measurement noise covariance in a nonlinear multi-source fusion navigation system, the traditional federated Kalman filter (FKF) is improved. In the FKF framework, the third-order spherical radial cubature rule and variational Bayesian theory are introduced, and a variational Bayesian federated cubature Kalman filter (VBFCKF) is proposed. Furthermore, a distributed information monitoring and compensation algorithm based on residuals is developed to address issues like anomalous measured values and asynchronous multi-rate problems. Finally, an experimental platform for unmanned vehicle navigation is designed, and the tests are conducted to confirm the efficacy of the suggested approach. The experimental results show that the system can precisely estimate values based on the measurement quality of sub-filters during navigation. It effectively adjusts measurement noise covariance during updates, thereby mitigating the negative impact of interferences like occlusions and electromagnetic noise on the multi-source fusion navigation system in complex environments. This can strengthen the accuracy and robustness of the navigation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssss发布了新的文献求助10
1秒前
fqyd发布了新的文献求助10
1秒前
4秒前
Ava应助铅笔羊采纳,获得10
5秒前
充电宝应助平淡的访风采纳,获得10
7秒前
顺心牛排发布了新的文献求助10
7秒前
谁叫小豆包完成签到,获得积分10
10秒前
Jasper应助tianshuai采纳,获得10
11秒前
研友_Z7mkRL发布了新的文献求助10
11秒前
眯眯眼的语雪应助jovrtic采纳,获得10
11秒前
13秒前
wanci应助左右不为难采纳,获得10
14秒前
星辰大海应助幽默的友容采纳,获得10
14秒前
落尘完成签到,获得积分10
14秒前
Lucas应助顺心牛排采纳,获得10
15秒前
16秒前
17秒前
科研小灵通完成签到 ,获得积分10
18秒前
cyrong发布了新的文献求助10
18秒前
18秒前
wenqing完成签到 ,获得积分10
19秒前
21秒前
铅笔羊发布了新的文献求助10
21秒前
22秒前
22秒前
顾矜应助Vancy采纳,获得10
23秒前
这是谁完成签到,获得积分10
23秒前
零時发布了新的文献求助10
25秒前
田様应助Vivalavida采纳,获得30
26秒前
纯真追命发布了新的文献求助10
26秒前
犹豫书雪发布了新的文献求助10
27秒前
上官若男应助jovrtic采纳,获得10
28秒前
29秒前
烟花应助彭a采纳,获得10
29秒前
29秒前
30秒前
大模型应助slj采纳,获得10
30秒前
34秒前
4311关注了科研通微信公众号
34秒前
tianshuai发布了新的文献求助10
36秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
The Oxford Handbook of Educational Psychology 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416865
求助须知:如何正确求助?哪些是违规求助? 3018696
关于积分的说明 8884757
捐赠科研通 2705908
什么是DOI,文献DOI怎么找? 1483978
科研通“疑难数据库(出版商)”最低求助积分说明 685860
邀请新用户注册赠送积分活动 681063