材料科学
钙钛矿(结构)
光电探测器
维数之咒
光电子学
纳米技术
化学工程
计算机科学
工程类
机器学习
作者
Limin Lai,Guiyuan Liu,Yibo Zhou,Xiaoyu He,Ying Ma
标识
DOI:10.1021/acsami.4c02220
摘要
Two-dimensional (2D) perovskites have been widely adopted for improving the performance and stability of three-dimensional (3D) metal halide perovskite devices. However, rational manipulation of the phase composition of 2D perovskites for suitable energy level alignment in 2D/3D perovskite photodetectors (PDs) has been rarely explored. Herein, we precisely controlled the dimensionality of the 2D perovskite on CsPbI2Br films by tuning the polarity of the n-butylammonium iodide (BAI)-based solvents. In comparison to the pure n = 1 2D perovskite (ACN-BAI) formed by acetonitrile treatment, a mixture of n = 1 and n = 2 phases (IPA-BAI) generated by isopropanol (IPA) treatment guaranteed more robust defect passivation and favorable energy level alignment at the perovskite/hole transport layer interface. Consequently, the IPA-BAI PD exhibited a responsivity of 0.41 A W–1, a detectivity of 1.01 × 1013 Jones, and a linear dynamic range of 120 dB. Furthermore, the mixed-phase 2D layer effectively shielded the 3D perovskite from moisture. The IPA-BAI device retained 76% of its initial responsivity after 500 h of nonencapsulated storage at 10% relative humidity. This research provides valuable insights into the dimensional modulation of 2D perovskites for further enhancing the performance of 2D/3D perovskite PDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI