Mobile-friendly skin lesion detection using an attention-driven lightweight model

计算机科学 加权 管道(软件) 班级(哲学) 人工智能 模式识别(心理学) 机器学习 功能(生物学) 生物 医学 进化生物学 放射科 程序设计语言
作者
Mingzhe Hu,Xiaofeng Yang
标识
DOI:10.1117/12.3006822
摘要

This study presents a lightweight pipeline for skin lesion detection, addressing the challenges posed by imbalanced class distribution and subtle or atypical appearances of some lesions. The pipeline is built around a lightweight model that leverages ghosted features and the DFC attention mechanism to reduce computational complexity while maintaining high performance. The model was trained on the HAM10000 dataset, which includes various types of skin lesions. To address the class imbalance in the dataset, the synthetic minority over-sampling technique and various image augmentation techniques were used. The model also incorporates a knowledge-based loss weighting technique, which assigns different weights to the loss function at the class level and the instance level, helping the model focus on minority classes and challenging samples. This technique involves assigning different weights to the loss function on two levels - the class level and the instance level. By applying appropriate loss weights, the model pays more attention to the minority classes and challenging samples, thus improving its ability to correctly detect and classify different skin lesions. The model achieved an accuracy of 92.4%, a precision of 84.2%, a recall of 86.9%, a f1-score of 85.4% with particularly strong performance in identifying Benign Keratosis-like Lesions (BKL) and Nevus (NV). Despite its superior performance, the model's computational cost is considerably lower than some models with less accuracy, making it an optimal solution for real-world applications where both accuracy and efficiency are essential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
1秒前
西西发布了新的文献求助10
1秒前
孟孟发布了新的文献求助10
2秒前
Zn应助Ampace小老弟采纳,获得10
3秒前
3秒前
pluto应助洗澡记得戴浴帽采纳,获得10
3秒前
3秒前
4秒前
xuanyu发布了新的文献求助10
5秒前
酷酷的羽毛完成签到,获得积分20
5秒前
5秒前
科研通AI5应助KevinT采纳,获得10
5秒前
6秒前
汉堡包应助GYPP采纳,获得10
6秒前
6秒前
思源应助夏天采纳,获得10
8秒前
善学以致用应助天赋丸子采纳,获得10
8秒前
8秒前
Qianbaor应助weimin采纳,获得10
8秒前
米大王发布了新的文献求助10
8秒前
cooot完成签到,获得积分10
9秒前
9秒前
上官若男应助正函数采纳,获得10
9秒前
10秒前
乐观紫发布了新的文献求助10
10秒前
科研通AI2S应助知无涯采纳,获得10
12秒前
12秒前
胖胖应助不如一默采纳,获得10
13秒前
13秒前
13秒前
xuanyu完成签到,获得积分10
13秒前
14秒前
kkk完成签到,获得积分10
14秒前
15秒前
思源应助ssc采纳,获得10
15秒前
17秒前
17秒前
17秒前
17秒前
小帅发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126