Deep learning on tertiary lymphoid structures in hematoxylin-eosin predicts cancer prognosis and immunotherapy response

医学 H&E染色 免疫疗法 旁侵犯 免疫组织化学 肿瘤科 癌症 肿瘤浸润淋巴细胞 癌症研究 内科学 病理
作者
Ziqiang Chen,Xiaobing Wang,Zelin Jin,Bosen Li,Dongxian Jiang,Yanqiu Wang,Mengping Jiang,Dandan Zhang,Pei Yuan,Yahui Zhao,Feiyue Feng,Yicheng Lin,Liping Jiang,Chenxi Wang,Weida Meng,Wenjing Ye,Jie Wang,Wenqing Qiu,Houbao Liu,Dan Huang,Ying-yong Hou,Xuefei Wang,Yuchen Jiao,Jianming Ying,Zhihua Liu,Yun Liu
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:3
标识
DOI:10.1038/s41698-024-00579-w
摘要

Abstract Tertiary lymphoid structures (TLSs) have been associated with favorable immunotherapy responses and prognosis in various cancers. Despite their significance, their quantification using multiplex immunohistochemistry (mIHC) staining of T and B lymphocytes remains labor-intensive, limiting its clinical utility. To address this challenge, we curated a dataset from matched mIHC and H&E whole-slide images (WSIs) and developed a deep learning model for automated segmentation of TLSs. The model achieved Dice coefficients of 0.91 on the internal test set and 0.866 on the external validation set, along with intersection over union (IoU) scores of 0.819 and 0.787, respectively. The TLS ratio, defined as the segmented TLS area over the total tissue area, correlated with B lymphocyte levels and the expression of CXCL13 , a chemokine associated with TLS formation, in 6140 patients spanning 16 tumor types from The Cancer Genome Atlas (TCGA). The prognostic models for overall survival indicated that the inclusion of the TLS ratio with TNM staging significantly enhanced the models’ discriminative ability, outperforming the traditional models that solely incorporated TNM staging, in 10 out of 15 TCGA tumor types. Furthermore, when applied to biopsied treatment-naïve tumor samples, higher TLS ratios predicted a positive immunotherapy response across multiple cohorts, including specific therapies for esophageal squamous cell carcinoma, non-small cell lung cancer, and stomach adenocarcinoma. In conclusion, our deep learning-based approach offers an automated and reproducible method for TLS segmentation and quantification, highlighting its potential in predicting immunotherapy response and informing cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzw发布了新的文献求助10
1秒前
Fxxkme发布了新的文献求助10
2秒前
2秒前
thynkz完成签到,获得积分10
2秒前
饺子完成签到,获得积分10
2秒前
Forest发布了新的文献求助10
3秒前
3秒前
干净的一手完成签到,获得积分20
3秒前
左白易发布了新的文献求助10
3秒前
qq小兵完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Migue应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
Henry应助科研通管家采纳,获得200
4秒前
慕青应助科研通管家采纳,获得10
4秒前
SC30发布了新的文献求助10
4秒前
啦啦啦啦德玛西亚完成签到,获得积分10
4秒前
你大米哥完成签到 ,获得积分10
4秒前
4秒前
科研通AI2S应助Yara.H采纳,获得10
5秒前
6秒前
7秒前
斯文败类应助研ZZ采纳,获得10
7秒前
Spectator完成签到,获得积分10
7秒前
酷波er应助ss1234ning采纳,获得10
7秒前
左白易完成签到,获得积分10
8秒前
grmqgq完成签到,获得积分10
8秒前
awen发布了新的文献求助30
8秒前
Sun1c7发布了新的文献求助10
8秒前
micpeach发布了新的文献求助10
10秒前
kqier完成签到,获得积分10
10秒前
彭于晏应助云云的困困采纳,获得10
11秒前
淡然发布了新的文献求助10
11秒前
13秒前
14秒前
完美世界应助SC30采纳,获得10
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587