Deep learning on tertiary lymphoid structures in hematoxylin-eosin predicts cancer prognosis and immunotherapy response

医学 H&E染色 免疫疗法 旁侵犯 免疫组织化学 肿瘤科 癌症 肿瘤浸润淋巴细胞 癌症研究 内科学 病理
作者
Ziqiang Chen,Xiaobing Wang,Zelin Jin,Bosen Li,Dongxian Jiang,Yanqiu Wang,Mengping Jiang,Dandan Zhang,Pei Yuan,Yahui Zhao,Feiyue Feng,Yicheng Lin,Liping Jiang,Chenxi Wang,Weida Meng,Wenjing Ye,Jie Wang,Wenqing Qiu,Houbao Liu,Dan Huang,Ying-yong Hou,Xuefei Wang,Yuchen Jiao,Jianming Ying,Zhihua Liu,Yun Liu
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1) 被引量:3
标识
DOI:10.1038/s41698-024-00579-w
摘要

Abstract Tertiary lymphoid structures (TLSs) have been associated with favorable immunotherapy responses and prognosis in various cancers. Despite their significance, their quantification using multiplex immunohistochemistry (mIHC) staining of T and B lymphocytes remains labor-intensive, limiting its clinical utility. To address this challenge, we curated a dataset from matched mIHC and H&E whole-slide images (WSIs) and developed a deep learning model for automated segmentation of TLSs. The model achieved Dice coefficients of 0.91 on the internal test set and 0.866 on the external validation set, along with intersection over union (IoU) scores of 0.819 and 0.787, respectively. The TLS ratio, defined as the segmented TLS area over the total tissue area, correlated with B lymphocyte levels and the expression of CXCL13 , a chemokine associated with TLS formation, in 6140 patients spanning 16 tumor types from The Cancer Genome Atlas (TCGA). The prognostic models for overall survival indicated that the inclusion of the TLS ratio with TNM staging significantly enhanced the models’ discriminative ability, outperforming the traditional models that solely incorporated TNM staging, in 10 out of 15 TCGA tumor types. Furthermore, when applied to biopsied treatment-naïve tumor samples, higher TLS ratios predicted a positive immunotherapy response across multiple cohorts, including specific therapies for esophageal squamous cell carcinoma, non-small cell lung cancer, and stomach adenocarcinoma. In conclusion, our deep learning-based approach offers an automated and reproducible method for TLS segmentation and quantification, highlighting its potential in predicting immunotherapy response and informing cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx发布了新的文献求助10
1秒前
2秒前
斯文败类应助清脆安南采纳,获得20
2秒前
烟花应助Arrow采纳,获得30
3秒前
小透明应助高挑的书雪采纳,获得30
3秒前
小透明应助高挑的书雪采纳,获得30
3秒前
秀莉完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得30
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得30
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得30
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
12秒前
852应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
搞怪的曼青完成签到,获得积分20
14秒前
xiahou完成签到,获得积分10
14秒前
15秒前
科研通AI5应助Y哦莫哦莫采纳,获得10
17秒前
18秒前
舒心渊思发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
22秒前
清脆安南发布了新的文献求助20
22秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3711763
求助须知:如何正确求助?哪些是违规求助? 3260160
关于积分的说明 9912823
捐赠科研通 2973506
什么是DOI,文献DOI怎么找? 1630643
邀请新用户注册赠送积分活动 773513
科研通“疑难数据库(出版商)”最低求助积分说明 744274