脱氧核酶
化学
连接器
小分子
荧光团
DNA
生物物理学
荧光
生物素化
组合化学
分子
劈理(地质)
纳米技术
生物化学
材料科学
有机化学
生物
物理
岩土工程
量子力学
断裂(地质)
计算机科学
工程类
操作系统
标识
DOI:10.1021/acs.analchem.4c00250
摘要
Sensitive detection of small molecules with biological and environmental interests is important for many applications, such as food safety, disease diagnosis, and environmental monitoring. Herein, we propose a highly selective antibody-bridged DNAzyme walker to sensitively detect small molecules. The antibody-bridged DNAzyme walker consists of a track, small-molecule-labeled DNAzyme walking strand, and antibody against small molecules. The track is built by co-modifying fluorophore-labeled substrates and small-molecule-labeled DNA linkers onto a gold nanoparticle (AuNP). In the absence of the target molecule, the antibody binds small molecule labels at the DNAzyme walking strand and the DNA linker, driving the DNAzyme walking strand on the surface of the AuNP. The attached DNAzyme walking strand moves along the track and cleaves substrates to generate high fluorescence signals to achieve signal amplification. As target molecules exist, they competitively bind with antibody to displace the small-molecule-labeled linker and DNAzyme walking strand, rendering the DNAzyme walker inactive in substrate cleavage and causing weak fluorescence. By using this antibody-bridged DNAzyme walker, we achieved sensitive detection of two biologically important small molecules, digoxin and folic acid. This work provides a new paradigm by combining the signal amplification strategy of a DNA walker and immunorecognition for sensitive and selective detection of small molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI