Consensus Model Driven by Interpretable Rules in Large-Scale Group Decision Making With Optimal Allocation of Information Granularity

粒度 群体决策 计算机科学 数据挖掘 运筹学 数学 数学优化 心理学 社会心理学 操作系统
作者
Bowen Zhang,Yucheng Dong,Witold Pedrycz
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 1233-1245 被引量:14
标识
DOI:10.1109/tsmc.2022.3196369
摘要

In group decision making (GDM), consensus level is regarded as a critical criterion to measure the effectiveness and availability of the final group decision solution. Consensus model is aimed at conducting the decision group to reach agreement through the process of group negotiation, advice feedback, and opinion modification, which is time-consuming and rests with the willingness and behavior of individual decision makers. Thus, to guide the shift in the opinions of decision makers within a limited time, it is essential to design an effective, interpretable, and fair consensus mechanism in GDM, which is particularly vital when a mass of decision makers (e.g., more than 30) are involved in the decision process, viz., we encounter a large-scale GDM (LSGDM). With the involvement of information granulation, this study presents a rule-based consensus model in LSGDM by optimally allocating the level of information granularity to each decision maker. The opinions of decision makers in LSGDM are divided into different clusters by engaging the fuzzy $C$ -means method. Inspired by a generic fuzzy rule-based model, the radius of the individual preference granule (PG) is calculated by a weighted linear combination of the granularity levels allocated to the clusters. Then, a consensus model with the optimal allocation of information granularity (CMOIG) is built to determine the granularity level for each cluster by minimizing the sum of radii of individual PG. An interactive consensus reaching process is proposed with the proposed CMOIG and fuzzy modification rules. The CMOIG and fuzzy modification rules simultaneously guarantees high efficiency and interpretability, and the generation method of PGs leads to high fairness due to low discrepancy among the decision group. Finally, numerical and comparative experiments are conducted in detail to verify the validity and superiority of the presented models in terms of the efficiency, interpretability, and fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助顺利毕业采纳,获得10
1秒前
领导范儿应助spray采纳,获得30
1秒前
1秒前
长风完成签到,获得积分10
2秒前
3秒前
吴岳发布了新的文献求助10
3秒前
科研通AI2S应助我是125采纳,获得10
4秒前
涛涛完成签到,获得积分10
4秒前
轩辕德地发布了新的文献求助10
5秒前
科研通AI2S应助jidou1011采纳,获得10
5秒前
魔幻的妖丽完成签到 ,获得积分10
6秒前
黄晓杰2024完成签到,获得积分10
7秒前
枫叶完成签到,获得积分10
8秒前
8秒前
9秒前
小二郎应助虚心盼晴采纳,获得10
9秒前
俊逸的盛男完成签到 ,获得积分10
9秒前
11秒前
脑洞疼应助枫叶采纳,获得10
12秒前
12秒前
Gyrate完成签到,获得积分10
13秒前
李李发布了新的文献求助50
13秒前
dashi完成签到 ,获得积分10
13秒前
无花果应助一天八杯水采纳,获得10
13秒前
13秒前
SS发布了新的文献求助10
14秒前
顺顺发布了新的文献求助10
15秒前
15秒前
15秒前
www发布了新的文献求助10
15秒前
16秒前
16秒前
李繁蕊发布了新的文献求助10
17秒前
暴躁的嘉懿完成签到,获得积分10
17秒前
LZH发布了新的文献求助20
17秒前
领导范儿应助rosexu采纳,获得10
18秒前
华生完成签到,获得积分10
19秒前
19秒前
Miracle关注了科研通微信公众号
19秒前
通~发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808