Consensus Model Driven by Interpretable Rules in Large-Scale Group Decision Making With Optimal Allocation of Information Granularity

粒度 群体决策 计算机科学 数据挖掘 运筹学 数学 数学优化 心理学 社会心理学 操作系统
作者
Bowen Zhang,Yucheng Dong,Witold Pedrycz
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 1233-1245 被引量:14
标识
DOI:10.1109/tsmc.2022.3196369
摘要

In group decision making (GDM), consensus level is regarded as a critical criterion to measure the effectiveness and availability of the final group decision solution. Consensus model is aimed at conducting the decision group to reach agreement through the process of group negotiation, advice feedback, and opinion modification, which is time-consuming and rests with the willingness and behavior of individual decision makers. Thus, to guide the shift in the opinions of decision makers within a limited time, it is essential to design an effective, interpretable, and fair consensus mechanism in GDM, which is particularly vital when a mass of decision makers (e.g., more than 30) are involved in the decision process, viz., we encounter a large-scale GDM (LSGDM). With the involvement of information granulation, this study presents a rule-based consensus model in LSGDM by optimally allocating the level of information granularity to each decision maker. The opinions of decision makers in LSGDM are divided into different clusters by engaging the fuzzy $C$ -means method. Inspired by a generic fuzzy rule-based model, the radius of the individual preference granule (PG) is calculated by a weighted linear combination of the granularity levels allocated to the clusters. Then, a consensus model with the optimal allocation of information granularity (CMOIG) is built to determine the granularity level for each cluster by minimizing the sum of radii of individual PG. An interactive consensus reaching process is proposed with the proposed CMOIG and fuzzy modification rules. The CMOIG and fuzzy modification rules simultaneously guarantees high efficiency and interpretability, and the generation method of PGs leads to high fairness due to low discrepancy among the decision group. Finally, numerical and comparative experiments are conducted in detail to verify the validity and superiority of the presented models in terms of the efficiency, interpretability, and fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
跳跃富发布了新的文献求助10
4秒前
Akim应助咋没人了采纳,获得10
6秒前
负责凛完成签到,获得积分10
6秒前
秋风飒发布了新的文献求助10
7秒前
8R60d8应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
MOON完成签到,获得积分10
10秒前
11秒前
tuanheqi应助织诗成锦采纳,获得30
13秒前
老实紫萱完成签到,获得积分10
14秒前
ghq7724完成签到,获得积分10
14秒前
wyt完成签到,获得积分10
15秒前
你好CDY发布了新的文献求助10
17秒前
17秒前
周芷卉完成签到 ,获得积分10
17秒前
18秒前
小夫发布了新的文献求助10
21秒前
孑轸完成签到 ,获得积分10
21秒前
友芸完成签到,获得积分10
22秒前
研友_VZG7GZ应助犹豫的亦云采纳,获得10
22秒前
险胜应助薛定谔的柯基采纳,获得30
23秒前
lily发布了新的文献求助10
23秒前
研友_VZG7GZ应助吟賞烟霞采纳,获得10
24秒前
初见完成签到 ,获得积分10
26秒前
十三香傻瓜完成签到,获得积分10
27秒前
Goodluck完成签到,获得积分10
27秒前
隐形曼青应助芋头采纳,获得10
27秒前
27秒前
李健的小迷弟应助uwasa采纳,获得10
28秒前
29秒前
29秒前
啰啰完成签到 ,获得积分10
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301976
求助须知:如何正确求助?哪些是违规求助? 2936548
关于积分的说明 8477880
捐赠科研通 2610232
什么是DOI,文献DOI怎么找? 1425053
科研通“疑难数据库(出版商)”最低求助积分说明 662271
邀请新用户注册赠送积分活动 646456