Radiomics and Artificial Intelligence in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Systematic Review

医学 乳腺癌 淋巴结转移 无线电技术 淋巴结 放射科 转移 肿瘤科 癌症 内科学
作者
Abdullah S. Eldaly,Francisco R. Ávila,Ricardo A. Torres‐Guzman,Karla C. Maita,John P. Garcia,Luiza Palmieri Serrano,Antonio J. Forte
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (6) 被引量:6
标识
DOI:10.2174/1573405618666220822093226
摘要

Breast cancer is the most common malignancy and the second most common cause of death in women worldwide. Axillary lymph node metastasis (ALNM) is the most significant prognostic factor in breast cancer. Under the current guidelines, sentinel lymph node biopsy (SLNB) is the standard of axillary staging in patients with clinically-node negative breast cancer. Despite the minimally invasive nature of SLNB, it can cause short and long-term morbidities, including pain, sensory impairment, and upper limb motor dysfunction. However, lymphedema remains the most feared adverse event, and it affects 7% of patients within 36 months of follow-up. Recently, we have witnessed the implication of radiomics and artificial intelligence domains in the diagnosis and follow-up of many malignancies with promising results. Therefore, we have conducted a systematic search to investigate the potential of radiomics and artificial intelligence in predicting ALNM.Four electronic databases were searched: PubMed, Scopus, CINAHL, and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as our basis of organization.For radiomics, the area under the curve (AUC) for the included studies ranged from 0.715 to 0.93. Accuracy ranged from 67.7% to 98%. Sensitivity and specificity ranged from 70.3% to 97.8% and 58.4% to 98.2%, respectively. For other artificial intelligence methods, AUC ranged from 0.68 to 0.98, while accuracy ranged from 55% to 89%.The results of radiomics and artificial intelligence in predicting ALNM are promising. However, validation as a substitute for SLNB requires more substantial evidence from large randomized trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乙猪完成签到 ,获得积分0
2秒前
xtutang完成签到,获得积分10
6秒前
小许完成签到 ,获得积分10
14秒前
前程似锦完成签到 ,获得积分10
15秒前
朴实乐天完成签到 ,获得积分10
25秒前
huazhangchina完成签到 ,获得积分10
37秒前
1分钟前
vincent完成签到 ,获得积分10
1分钟前
wx1完成签到 ,获得积分0
1分钟前
Bennyz完成签到,获得积分10
1分钟前
等待的剑身完成签到,获得积分10
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
wenbinvan完成签到,获得积分0
1分钟前
stiger完成签到,获得积分10
1分钟前
1分钟前
一一发布了新的文献求助10
2分钟前
HHM发布了新的文献求助10
2分钟前
MOF完成签到 ,获得积分10
2分钟前
糖宝完成签到 ,获得积分10
2分钟前
领导范儿应助bzmuzxy采纳,获得10
2分钟前
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
2分钟前
bzmuzxy发布了新的文献求助10
2分钟前
Richardisme完成签到 ,获得积分10
2分钟前
Damon完成签到 ,获得积分10
2分钟前
秋夜临完成签到,获得积分10
3分钟前
czj完成签到 ,获得积分10
3分钟前
桃子e完成签到 ,获得积分10
3分钟前
www完成签到,获得积分10
3分钟前
yanxueyi完成签到 ,获得积分10
3分钟前
Lrdal完成签到,获得积分10
3分钟前
sunny完成签到 ,获得积分10
3分钟前
cadcae完成签到,获得积分10
3分钟前
科研通AI2S应助畅快城采纳,获得10
3分钟前
Lrdal发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
顾矜应助紫熊采纳,获得10
3分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376895
求助须知:如何正确求助?哪些是违规求助? 2993047
关于积分的说明 8752976
捐赠科研通 2677392
什么是DOI,文献DOI怎么找? 1466593
科研通“疑难数据库(出版商)”最低求助积分说明 678398
邀请新用户注册赠送积分活动 669957