锂(药物)
阴极
溶解
电化学
材料科学
石墨
电解质
离子电导率
离子键合
碳纤维
离子
电导率
涂层
晶界
化学工程
无机化学
复合数
纳米技术
电极
复合材料
化学
物理化学
微观结构
医学
有机化学
工程类
内分泌学
作者
Yuanchao Li,Bengang Xing,Zhenguang Wang,Huishuang Zhang,Yanyan Liu,Jianchun Jiang,Shuting Yang,Baojun Li
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2022-09-02
卷期号:5 (9): 10983-10993
被引量:2
标识
DOI:10.1021/acsaem.2c01634
摘要
The construction of an ionic/electronic conducting network is crucial for achieving satisfactory electrochemical performances of LiMnPO4 materials because of their low conductivity and the dissolution of Mn2+. Herein, a hierarchical LiMn0.8Fe0.2PO4/C composite comodified with Li3PO4 and graphite is synthesized via a facile solid-state method combined with freeze drying. The ionic conductor Li3PO4 in situ generated can improve the lithium-ion conductivity and inhibit the reaction of Mn ions with electrolytes. An electronic conducting network is formed through the secondary coating graphite and the residual carbon in situ created within the grain boundaries of LiMnPO4 nanocrystallites. Taking advantage of the synergy effect, the Li3PO4 and graphite comodified LiMn0.8Fe0.2PO4/C material yields an initial discharge capacity of 150 mA h g–1at 0.1 C, a high-rate reversible capacity of 136 mA h g–1at 5 C, and a long-term capacity retention of 91.6% after 500 cycles at 2 C. The design strategy provides a significant inspiration for the development of high-performance cathode materials with practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI