DB-GPT: Large Language Model Meets Database

数据库 计算机科学 数据库设计 SQL语言
作者
Xuanhe Zhou,Zhaoyan Sun,Guoliang Li
出处
期刊:Data Science and Engineering [Springer Science+Business Media]
卷期号:9 (1): 102-111 被引量:15
标识
DOI:10.1007/s41019-023-00235-6
摘要

Abstract Large language models (LLMs) have shown superior performance in various areas. And LLMs have the potential to revolutionize data management by serving as the "brain" of next-generation database systems. However, there are several challenges that utilize LLMs to optimize databases. First, it is challenging to provide appropriate prompts (e.g., instructions and demonstration examples) to enable LLMs to understand the database optimization problems. Second, LLMs only capture the logical database characters (e.g., SQL semantics) but are not aware of physical characters (e.g., data distributions), and it requires to fine-tune LLMs to capture both physical and logical information. Third, LLMs are not well trained for databases with strict constraints (e.g., query plan equivalence) and privacy-preserving requirements, and it is challenging to train database-specific LLMs while ensuring database privacy. To overcome these challenges, this vision paper proposes a LLM-based database framework (), including automatic prompt generation, DB-specific model fine-tuning, and DB-specific model design and pre-training. Preliminary experiments show that achieves relatively good performance in database tasks like query rewrite and index tuning. The source code and datasets are available at github.com/TsinghuaDatabaseGroup/DB-GPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代夏青完成签到 ,获得积分10
1秒前
充电宝应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
ww应助能干夏波采纳,获得10
4秒前
9秒前
9秒前
所所应助深霖阳光采纳,获得30
10秒前
笑点低凌珍完成签到 ,获得积分10
12秒前
12秒前
冷傲山彤发布了新的文献求助10
13秒前
乐乐乐完成签到,获得积分10
16秒前
西西发布了新的文献求助10
16秒前
SYLH应助拼搏奇异果采纳,获得10
17秒前
所所应助深霖阳光采纳,获得30
20秒前
FashionBoy应助迅速的网络采纳,获得10
20秒前
21秒前
cdercder应助XJ采纳,获得20
21秒前
汉堡包应助大力的含卉采纳,获得10
22秒前
领导范儿应助myjf采纳,获得10
23秒前
23秒前
23秒前
GGbond完成签到,获得积分10
24秒前
24秒前
26秒前
27秒前
28秒前
GGbond关注了科研通微信公众号
28秒前
28秒前
dww发布了新的文献求助10
29秒前
VDC应助瘦瘦寄风采纳,获得30
29秒前
现代书雪发布了新的文献求助10
32秒前
汉堡包应助dww采纳,获得10
32秒前
Lane_Crumus发布了新的文献求助10
32秒前
hyjcs完成签到,获得积分0
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901