Reliability Evaluation of Slopes Considering Spatial Variability of Soil Parameters Based on Efficient Surrogate Model

可靠性(半导体) 替代模型 维数之咒 多元统计 计算机科学 多元自适应回归样条 样品(材料) 数据挖掘 统计 回归分析 人工智能 机器学习 数学 贝叶斯多元线性回归 物理 量子力学 色谱法 功率(物理) 化学
作者
Zhiping Deng,Min Zhong,Min Pan,Shui‐Hua Jiang,Jingtai Niu,Kehong Zheng
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:10 (1)
标识
DOI:10.1061/ajrua6.rueng-1172
摘要

The conventional surrogate model for slope reliability assessment often is faced with the issues of high dimensionality and sample selection disorder, which are caused by the spatial variability of soil parameters and which compromise the precision and efficiency of slope reliability assessment. Previous studies focused on solving this problem mainly by choosing more-accurate models; studies of optimizing the training samples for constructing surrogate models are relatively scarce. This paper proposes a multivariate adaptive regression spline model based on active learning (AMARS) for slope reliability analysis in spatially variable soils, combined with the sliced inverse regression (SIR) method. The active learning includes self-supervised learning methods that optimize the sample set for constructing surrogate models. The training samples are processed using the SIR method to prevent the model from falling into dimensionality disaster. The proposed method was validated using two slope cases with spatial variation. Comparison of computational efficiency and accuracy in estimating slope failure probability revealed that the method suggested here outperforms others. Moreover, for both single-layer simple and multilayer complex spatially varying slopes, the proposed method not only reduces computational costs effectively but can also be used to evaluate the reliability of slopes with small failure probabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rhq完成签到,获得积分10
刚刚
Ye完成签到,获得积分10
刚刚
吃肉璇璇完成签到,获得积分10
1秒前
1秒前
gy发布了新的文献求助10
1秒前
wxyinhefeng完成签到 ,获得积分0
2秒前
xfy完成签到,获得积分10
2秒前
斯文败类应助Pursuit采纳,获得10
3秒前
fabea完成签到,获得积分10
4秒前
4秒前
成事在人307完成签到,获得积分10
4秒前
咸鱼王完成签到,获得积分10
5秒前
四夕完成签到 ,获得积分10
5秒前
heart完成签到,获得积分10
6秒前
NexusExplorer应助gy采纳,获得10
6秒前
jiyuan完成签到,获得积分10
6秒前
deer完成签到,获得积分10
7秒前
cheng完成签到,获得积分10
7秒前
ZDM6094完成签到 ,获得积分10
7秒前
Jingshuiliushen完成签到,获得积分10
7秒前
欢喜的凡之完成签到,获得积分10
8秒前
自觉绿柏完成签到,获得积分10
8秒前
SGLY完成签到,获得积分10
8秒前
非对称转录完成签到,获得积分0
8秒前
9秒前
9秒前
小鹿呀完成签到,获得积分10
10秒前
遁一发布了新的文献求助10
10秒前
搞怪的明辉完成签到,获得积分10
11秒前
A宇完成签到,获得积分10
12秒前
樊尔风完成签到,获得积分10
12秒前
kekeke科发布了新的文献求助10
13秒前
燃之一手完成签到 ,获得积分10
13秒前
Pwrry完成签到,获得积分10
13秒前
李健应助ly采纳,获得10
13秒前
14秒前
小毛驴要加油完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478