Reliability Evaluation of Slopes Considering Spatial Variability of Soil Parameters Based on Efficient Surrogate Model

可靠性(半导体) 替代模型 维数之咒 多元统计 计算机科学 多元自适应回归样条 样品(材料) 数据挖掘 统计 回归分析 人工智能 机器学习 数学 贝叶斯多元线性回归 物理 量子力学 色谱法 功率(物理) 化学
作者
Zhiping Deng,Min Zhong,Min Pan,Shui‐Hua Jiang,Jingtai Niu,Kehong Zheng
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:10 (1)
标识
DOI:10.1061/ajrua6.rueng-1172
摘要

The conventional surrogate model for slope reliability assessment often is faced with the issues of high dimensionality and sample selection disorder, which are caused by the spatial variability of soil parameters and which compromise the precision and efficiency of slope reliability assessment. Previous studies focused on solving this problem mainly by choosing more-accurate models; studies of optimizing the training samples for constructing surrogate models are relatively scarce. This paper proposes a multivariate adaptive regression spline model based on active learning (AMARS) for slope reliability analysis in spatially variable soils, combined with the sliced inverse regression (SIR) method. The active learning includes self-supervised learning methods that optimize the sample set for constructing surrogate models. The training samples are processed using the SIR method to prevent the model from falling into dimensionality disaster. The proposed method was validated using two slope cases with spatial variation. Comparison of computational efficiency and accuracy in estimating slope failure probability revealed that the method suggested here outperforms others. Moreover, for both single-layer simple and multilayer complex spatially varying slopes, the proposed method not only reduces computational costs effectively but can also be used to evaluate the reliability of slopes with small failure probabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Max发布了新的文献求助10
1秒前
英俊的铭应助江峰采纳,获得10
2秒前
2秒前
务实的天空完成签到,获得积分10
3秒前
慕青应助冷酷的雅寒采纳,获得10
3秒前
情怀应助123采纳,获得10
3秒前
哭泣的铅笔完成签到,获得积分10
4秒前
CodeCraft应助GHOMON采纳,获得10
4秒前
江汛完成签到,获得积分10
5秒前
情怀应助小田心采纳,获得10
5秒前
6秒前
7秒前
7秒前
Liu_Ci发布了新的文献求助10
7秒前
奥利给完成签到,获得积分10
7秒前
orixero应助xingxingwang采纳,获得10
7秒前
折镜发布了新的文献求助10
8秒前
英俊的铭应助tll采纳,获得10
8秒前
江汛发布了新的文献求助10
8秒前
Kelly关注了科研通微信公众号
9秒前
识南完成签到,获得积分10
9秒前
9秒前
雪山飞龙发布了新的文献求助10
11秒前
副本完成签到 ,获得积分10
11秒前
下雨天发布了新的文献求助10
12秒前
活力画笔完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
14秒前
panjy发布了新的文献求助30
14秒前
Owen应助白河夜船采纳,获得10
14秒前
14秒前
15秒前
guoyunlong完成签到,获得积分10
15秒前
清嘉发布了新的文献求助10
15秒前
17秒前
满满阳光发布了新的文献求助10
17秒前
刘财财发布了新的文献求助10
17秒前
活力画笔发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721