Large-Scale Parallel Cognitive Diagnostic Test Assembly Using A Dual-Stage Differential Evolution-Based Approach

计算机科学 对偶(语法数字) 背景(考古学) 差异进化 集合(抽象数据类型) 图形 比例(比率) 代表(政治) 人工智能 机器学习 理论计算机科学 艺术 古生物学 文学类 生物 物理 量子力学 政治 政治学 法学 程序设计语言
作者
Xi Cao,Ying Lin,Dong Liu,Henry Been‐Lirn Duh,Ying Lin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (6): 3120-3133
标识
DOI:10.1109/tai.2023.3341916
摘要

Parallel testing, which uses different test forms to assess examinees, is a necessary and important technique in both educational and psychometric assessments. A key but challenging problem for successful parallel testing lies in generating a high-quality parallel test set. Most existing parallel test assembly methods were developed for classic test theory and item response theory. In the context of cognitive diagnosis models, which is a new instrument featuring the ability to assess the examinee's status on fine-grained attributes, the investigation of parallel test assembly is limited, particularly for large parallel scale. This study aims to provide an efficient dual-stage solution for the large-scale parallel cognitive diagnostic test (CDT) assembly problem. In the first stage, the assembly of individual CDTs is treated as a multimodal optimization problem and a niching differential evolution algorithm is developed to find an elite set of CDTs with near-optimal diagnostic performance. By redesigning evolutionary operators, the efficient search mechanism in differential evolution is transferred to the binary context and suits the purpose of optimizing item assignment to a CDT. In the second stage, a graph representation is defined to capture the set of elite CDTs and their overlapping relationships. A deterministic algorithm is applied to the graph to find specific nodal maximum cliques and provide two types of parallel test sets that satisfy different examiner preferences. Simulation studies under a variety of conditions and real-data demonstration show that the proposed method outperforms the existing approaches on large-scale instances while remaining competitive on small-scale cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xyyy发布了新的文献求助10
1秒前
uu完成签到,获得积分10
1秒前
小蘑菇应助赵赵赵采纳,获得10
1秒前
阿兹卡班狂徒完成签到 ,获得积分10
1秒前
1秒前
yuefeng发布了新的文献求助10
2秒前
澳臻白发布了新的文献求助10
2秒前
3秒前
刘大妮发布了新的文献求助10
3秒前
3秒前
王欧尼发布了新的文献求助10
4秒前
sooya关注了科研通微信公众号
4秒前
5秒前
5秒前
青木蓝发布了新的文献求助10
7秒前
852应助gaga采纳,获得10
7秒前
8秒前
8秒前
游尘发布了新的文献求助10
9秒前
bkagyin应助zhaowenxian采纳,获得10
9秒前
水电费第三方完成签到,获得积分20
10秒前
斯文败类应助lalala采纳,获得10
10秒前
小王爱看文献完成签到,获得积分10
11秒前
李明完成签到,获得积分10
11秒前
酷波er应助Khr1stINK采纳,获得10
12秒前
cora发布了新的文献求助10
12秒前
shelly0621发布了新的文献求助10
12秒前
中华有为发布了新的文献求助10
12秒前
特兰克斯发布了新的文献求助10
12秒前
Ares完成签到,获得积分10
13秒前
13秒前
在水一方应助garyaa采纳,获得10
13秒前
DAN_完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助屹舟采纳,获得10
14秒前
科研通AI5应助一一采纳,获得10
15秒前
隐形的紫菜完成签到,获得积分10
15秒前
23132发布了新的文献求助10
16秒前
cora完成签到,获得积分10
17秒前
放眼天下完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794