Large-Scale Parallel Cognitive Diagnostic Test Assembly Using A Dual-Stage Differential Evolution-Based Approach

计算机科学 对偶(语法数字) 背景(考古学) 差异进化 集合(抽象数据类型) 图形 比例(比率) 代表(政治) 人工智能 机器学习 理论计算机科学 艺术 古生物学 文学类 生物 物理 量子力学 政治 政治学 法学 程序设计语言
作者
Xi Cao,Ying Lin,Dong Liu,Henry Been‐Lirn Duh,Ying Lin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (6): 3120-3133
标识
DOI:10.1109/tai.2023.3341916
摘要

Parallel testing, which uses different test forms to assess examinees, is a necessary and important technique in both educational and psychometric assessments. A key but challenging problem for successful parallel testing lies in generating a high-quality parallel test set. Most existing parallel test assembly methods were developed for classic test theory and item response theory. In the context of cognitive diagnosis models, which is a new instrument featuring the ability to assess the examinee's status on fine-grained attributes, the investigation of parallel test assembly is limited, particularly for large parallel scale. This study aims to provide an efficient dual-stage solution for the large-scale parallel cognitive diagnostic test (CDT) assembly problem. In the first stage, the assembly of individual CDTs is treated as a multimodal optimization problem and a niching differential evolution algorithm is developed to find an elite set of CDTs with near-optimal diagnostic performance. By redesigning evolutionary operators, the efficient search mechanism in differential evolution is transferred to the binary context and suits the purpose of optimizing item assignment to a CDT. In the second stage, a graph representation is defined to capture the set of elite CDTs and their overlapping relationships. A deterministic algorithm is applied to the graph to find specific nodal maximum cliques and provide two types of parallel test sets that satisfy different examiner preferences. Simulation studies under a variety of conditions and real-data demonstration show that the proposed method outperforms the existing approaches on large-scale instances while remaining competitive on small-scale cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao完成签到,获得积分10
刚刚
1秒前
1秒前
SciGPT应助ranran采纳,获得10
1秒前
歡禧完成签到,获得积分10
2秒前
2秒前
科研小迷糊完成签到,获得积分10
2秒前
十六发布了新的文献求助10
2秒前
小甑发布了新的文献求助10
3秒前
大个应助半疯半癫采纳,获得30
3秒前
CodeCraft应助应天亦采纳,获得30
3秒前
3秒前
火星上藏鸟完成签到,获得积分10
3秒前
3秒前
wangxuan完成签到,获得积分10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
ludong_0应助科研通管家采纳,获得10
5秒前
5秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
ludong_0应助科研通管家采纳,获得10
5秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
古往今来应助科研通管家采纳,获得20
6秒前
ding应助科研通管家采纳,获得50
6秒前
李健应助科研通管家采纳,获得30
6秒前
F503完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
哆啦豆豆关注了科研通微信公众号
6秒前
语青发布了新的文献求助10
7秒前
好好工作完成签到,获得积分20
7秒前
星星完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582