Solid-State, Single-Ion Conducting, Polymer Blend Electrolytes with Enhanced Li+ Conduction, Electrochemical Stability, and Limiting Current Density

电化学 电解质 限制电流 离子 材料科学 聚合物 电导率 离子电导率 锂(药物) 高分子化学 化学工程 化学 电极 物理化学 复合材料 有机化学 医学 内分泌学 工程类
作者
Mengying Yang,Thomas H. Epps
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (4): 1855-1869 被引量:4
标识
DOI:10.1021/acs.chemmater.3c02389
摘要

The development of solid-state polymer electrolytes with high lithium conductivity is crucial for improving lithium-ion battery performance and ameliorating the safety challenges associated with current solvent-based electrolytes. Unfortunately, sluggish polymer segmental dynamics are known to constrain conductivity enhancements in solid-state polymer electrolyte systems, limiting overall performance. In this work, a glassy single-ion-conducting polymer, poly[lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] (PLiMTFSI), was blended with a flexible polymer, poly(oligo-oxyethylene methyl ether methacrylate), and the impact of PLiMTFSI molecular weight and ion concentration on the thermal and ion-conducting behavior of blend electrolytes was investigated. High ionic conductivities approaching 1 × 10–2 S/cm at 150 °C were realized in this polymer blend electrolyte system as a result of decoupling Li+ transport from polymer segmental dynamics. The decoupled ion transport was attributed to the packing frustration of the glassy PLiMTFSI─sufficient percolating free volume was generated to produce effective ion diffusion pathways. This decoupling was tunable as the ion transport could be altered from being closely coupled to the polymer segmental dynamics (Vogel–Tammann–Fulcher-like) to hopping (Arrhenius-like) by increasing the PLiMTFSI molecular weight and ion concentration. Moreover, the immobilized TFSI anion resulted in high Li+ selectivity (Li+ transference number = 0.9), high electrochemical stability (up to 4.7 V against Li+/Li), and a limiting current density of 1.8 mA/cm2 (electrolyte thickness = 0.05 cm). These features suggest that this single-ion-conducting, polymer blend electrolyte might be a promising alternative to a benchmark system─salt-doped poly(ethylene oxide). Moreover, the above characteristics can support the battery operation at higher voltages using energy-dense Li metal anodes, with faster charging rates and enhanced energy/power densities. Overall, the results suggest that polymer chain packing frustration can be exploited to overcome the constraints of slow polymer segmental relaxations to achieve rapid and highly selective ion transport and enhanced performance in solid-state polymer electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舍得完成签到,获得积分10
2秒前
Lucas应助Ash采纳,获得10
3秒前
3秒前
茶博士发布了新的文献求助10
3秒前
摇不滚摇滚完成签到 ,获得积分10
4秒前
Billy应助祈雪落采纳,获得30
6秒前
李健的小迷弟应助山竹采纳,获得10
6秒前
7秒前
酷波er应助机灵又蓝采纳,获得10
7秒前
研友_LX66qZ完成签到,获得积分10
8秒前
傲娇靖巧完成签到,获得积分20
8秒前
大力大楚发布了新的文献求助10
10秒前
诱阙寰完成签到,获得积分10
10秒前
文艺的夏青完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助傲娇靖巧采纳,获得10
13秒前
彳亍1117应助洁净伟祺采纳,获得10
14秒前
冷酷鱼发布了新的文献求助10
14秒前
yyr发布了新的文献求助10
18秒前
茶博士完成签到,获得积分10
19秒前
脑洞疼应助Gu采纳,获得10
21秒前
23秒前
SciGPT应助yyr采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
篮乐艺完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
蓝胖子应助无辜的皮皮虾采纳,获得30
26秒前
26秒前
坦率的剑身完成签到 ,获得积分10
26秒前
26秒前
153153153关注了科研通微信公众号
27秒前
早日毕业佳完成签到,获得积分10
28秒前
111完成签到,获得积分10
30秒前
yaoyh_gc完成签到,获得积分10
30秒前
renpp发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057411
求助须知:如何正确求助?哪些是违规求助? 2713843
关于积分的说明 7437797
捐赠科研通 2358991
什么是DOI,文献DOI怎么找? 1249646
科研通“疑难数据库(出版商)”最低求助积分说明 607222
版权声明 596328