Solid-State, Single-Ion Conducting, Polymer Blend Electrolytes with Enhanced Li+ Conduction, Electrochemical Stability, and Limiting Current Density

电化学 电解质 限制电流 离子 材料科学 聚合物 电导率 离子电导率 锂(药物) 高分子化学 化学工程 化学 电极 物理化学 复合材料 有机化学 内分泌学 工程类 医学
作者
Mengying Yang,Thomas H. Epps
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (4): 1855-1869 被引量:4
标识
DOI:10.1021/acs.chemmater.3c02389
摘要

The development of solid-state polymer electrolytes with high lithium conductivity is crucial for improving lithium-ion battery performance and ameliorating the safety challenges associated with current solvent-based electrolytes. Unfortunately, sluggish polymer segmental dynamics are known to constrain conductivity enhancements in solid-state polymer electrolyte systems, limiting overall performance. In this work, a glassy single-ion-conducting polymer, poly[lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] (PLiMTFSI), was blended with a flexible polymer, poly(oligo-oxyethylene methyl ether methacrylate), and the impact of PLiMTFSI molecular weight and ion concentration on the thermal and ion-conducting behavior of blend electrolytes was investigated. High ionic conductivities approaching 1 × 10–2 S/cm at 150 °C were realized in this polymer blend electrolyte system as a result of decoupling Li+ transport from polymer segmental dynamics. The decoupled ion transport was attributed to the packing frustration of the glassy PLiMTFSI─sufficient percolating free volume was generated to produce effective ion diffusion pathways. This decoupling was tunable as the ion transport could be altered from being closely coupled to the polymer segmental dynamics (Vogel–Tammann–Fulcher-like) to hopping (Arrhenius-like) by increasing the PLiMTFSI molecular weight and ion concentration. Moreover, the immobilized TFSI anion resulted in high Li+ selectivity (Li+ transference number = 0.9), high electrochemical stability (up to 4.7 V against Li+/Li), and a limiting current density of 1.8 mA/cm2 (electrolyte thickness = 0.05 cm). These features suggest that this single-ion-conducting, polymer blend electrolyte might be a promising alternative to a benchmark system─salt-doped poly(ethylene oxide). Moreover, the above characteristics can support the battery operation at higher voltages using energy-dense Li metal anodes, with faster charging rates and enhanced energy/power densities. Overall, the results suggest that polymer chain packing frustration can be exploited to overcome the constraints of slow polymer segmental relaxations to achieve rapid and highly selective ion transport and enhanced performance in solid-state polymer electrolytes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜刀完成签到 ,获得积分10
1秒前
陈小青完成签到 ,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
tuanheqi应助科研通管家采纳,获得150
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
4秒前
朱洪帆完成签到,获得积分20
7秒前
飞儿完成签到 ,获得积分10
8秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
王的故郷完成签到 ,获得积分10
13秒前
ccm完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Jiang 小白完成签到,获得积分10
18秒前
牛马研究生完成签到 ,获得积分10
23秒前
夜话风陵杜完成签到 ,获得积分0
24秒前
xrzsxiaoli发布了新的文献求助10
24秒前
28秒前
28秒前
一只找论文的小云朵完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
jianglili完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
35秒前
琦玉老师的小跟班完成签到 ,获得积分10
36秒前
海林完成签到 ,获得积分10
37秒前
蜉蝣完成签到 ,获得积分10
38秒前
ZH完成签到 ,获得积分10
42秒前
44秒前
黄天完成签到 ,获得积分10
47秒前
求知者1701完成签到,获得积分10
47秒前
Miao完成签到 ,获得积分10
50秒前
周游完成签到 ,获得积分10
50秒前
Shrimp完成签到 ,获得积分10
50秒前
Ttttracy完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
55秒前
米鼓完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936