Solid-State, Single-Ion Conducting, Polymer Blend Electrolytes with Enhanced Li+ Conduction, Electrochemical Stability, and Limiting Current Density

电化学 电解质 限制电流 离子 材料科学 聚合物 电导率 离子电导率 锂(药物) 高分子化学 化学工程 化学 电极 物理化学 复合材料 有机化学 医学 内分泌学 工程类
作者
Mengying Yang,Thomas H. Epps
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (4): 1855-1869 被引量:4
标识
DOI:10.1021/acs.chemmater.3c02389
摘要

The development of solid-state polymer electrolytes with high lithium conductivity is crucial for improving lithium-ion battery performance and ameliorating the safety challenges associated with current solvent-based electrolytes. Unfortunately, sluggish polymer segmental dynamics are known to constrain conductivity enhancements in solid-state polymer electrolyte systems, limiting overall performance. In this work, a glassy single-ion-conducting polymer, poly[lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] (PLiMTFSI), was blended with a flexible polymer, poly(oligo-oxyethylene methyl ether methacrylate), and the impact of PLiMTFSI molecular weight and ion concentration on the thermal and ion-conducting behavior of blend electrolytes was investigated. High ionic conductivities approaching 1 × 10–2 S/cm at 150 °C were realized in this polymer blend electrolyte system as a result of decoupling Li+ transport from polymer segmental dynamics. The decoupled ion transport was attributed to the packing frustration of the glassy PLiMTFSI─sufficient percolating free volume was generated to produce effective ion diffusion pathways. This decoupling was tunable as the ion transport could be altered from being closely coupled to the polymer segmental dynamics (Vogel–Tammann–Fulcher-like) to hopping (Arrhenius-like) by increasing the PLiMTFSI molecular weight and ion concentration. Moreover, the immobilized TFSI anion resulted in high Li+ selectivity (Li+ transference number = 0.9), high electrochemical stability (up to 4.7 V against Li+/Li), and a limiting current density of 1.8 mA/cm2 (electrolyte thickness = 0.05 cm). These features suggest that this single-ion-conducting, polymer blend electrolyte might be a promising alternative to a benchmark system─salt-doped poly(ethylene oxide). Moreover, the above characteristics can support the battery operation at higher voltages using energy-dense Li metal anodes, with faster charging rates and enhanced energy/power densities. Overall, the results suggest that polymer chain packing frustration can be exploited to overcome the constraints of slow polymer segmental relaxations to achieve rapid and highly selective ion transport and enhanced performance in solid-state polymer electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
msk完成签到 ,获得积分10
刚刚
香蕉觅云应助豆豆采纳,获得10
1秒前
1秒前
零一完成签到,获得积分10
3秒前
阿辉完成签到 ,获得积分10
4秒前
莫西莫西完成签到 ,获得积分10
5秒前
暖阳完成签到,获得积分10
5秒前
大头欢欢完成签到,获得积分10
7秒前
不想懂完成签到,获得积分10
9秒前
life完成签到,获得积分10
12秒前
13秒前
M鹿M完成签到 ,获得积分10
17秒前
大虫子完成签到,获得积分10
24秒前
苹果大侠完成签到 ,获得积分10
30秒前
月夕完成签到 ,获得积分10
35秒前
iuhgnor完成签到,获得积分10
36秒前
大轩完成签到 ,获得积分10
41秒前
67号完成签到 ,获得积分10
41秒前
韶华若锦完成签到 ,获得积分20
43秒前
mix完成签到,获得积分10
44秒前
44秒前
44秒前
汉堡包应助海绵宝宝采纳,获得10
44秒前
506407完成签到,获得积分10
45秒前
蛋花肉圆汤完成签到,获得积分10
45秒前
hgl发布了新的文献求助10
46秒前
kek完成签到 ,获得积分10
46秒前
邢邢完成签到,获得积分10
48秒前
飞飞完成签到,获得积分10
48秒前
青青完成签到 ,获得积分10
49秒前
50秒前
fatcat发布了新的文献求助10
50秒前
冷静的网络完成签到 ,获得积分10
51秒前
77完成签到 ,获得积分10
51秒前
wangzhenghua完成签到 ,获得积分10
52秒前
轻歌水越完成签到 ,获得积分10
53秒前
海绵宝宝发布了新的文献求助10
56秒前
lina完成签到 ,获得积分10
56秒前
Orange应助hgl采纳,获得10
1分钟前
香山叶正红完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293975
求助须知:如何正确求助?哪些是违规求助? 4443988
关于积分的说明 13831887
捐赠科研通 4327968
什么是DOI,文献DOI怎么找? 2375834
邀请新用户注册赠送积分活动 1371109
关于科研通互助平台的介绍 1336150