Solid-State, Single-Ion Conducting, Polymer Blend Electrolytes with Enhanced Li+ Conduction, Electrochemical Stability, and Limiting Current Density

电化学 电解质 限制电流 离子 材料科学 聚合物 电导率 离子电导率 锂(药物) 高分子化学 化学工程 化学 电极 物理化学 复合材料 有机化学 内分泌学 工程类 医学
作者
Mengying Yang,Thomas H. Epps
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (4): 1855-1869 被引量:4
标识
DOI:10.1021/acs.chemmater.3c02389
摘要

The development of solid-state polymer electrolytes with high lithium conductivity is crucial for improving lithium-ion battery performance and ameliorating the safety challenges associated with current solvent-based electrolytes. Unfortunately, sluggish polymer segmental dynamics are known to constrain conductivity enhancements in solid-state polymer electrolyte systems, limiting overall performance. In this work, a glassy single-ion-conducting polymer, poly[lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] (PLiMTFSI), was blended with a flexible polymer, poly(oligo-oxyethylene methyl ether methacrylate), and the impact of PLiMTFSI molecular weight and ion concentration on the thermal and ion-conducting behavior of blend electrolytes was investigated. High ionic conductivities approaching 1 × 10–2 S/cm at 150 °C were realized in this polymer blend electrolyte system as a result of decoupling Li+ transport from polymer segmental dynamics. The decoupled ion transport was attributed to the packing frustration of the glassy PLiMTFSI─sufficient percolating free volume was generated to produce effective ion diffusion pathways. This decoupling was tunable as the ion transport could be altered from being closely coupled to the polymer segmental dynamics (Vogel–Tammann–Fulcher-like) to hopping (Arrhenius-like) by increasing the PLiMTFSI molecular weight and ion concentration. Moreover, the immobilized TFSI anion resulted in high Li+ selectivity (Li+ transference number = 0.9), high electrochemical stability (up to 4.7 V against Li+/Li), and a limiting current density of 1.8 mA/cm2 (electrolyte thickness = 0.05 cm). These features suggest that this single-ion-conducting, polymer blend electrolyte might be a promising alternative to a benchmark system─salt-doped poly(ethylene oxide). Moreover, the above characteristics can support the battery operation at higher voltages using energy-dense Li metal anodes, with faster charging rates and enhanced energy/power densities. Overall, the results suggest that polymer chain packing frustration can be exploited to overcome the constraints of slow polymer segmental relaxations to achieve rapid and highly selective ion transport and enhanced performance in solid-state polymer electrolytes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸绾绾发布了新的文献求助10
刚刚
斯文败类应助ww采纳,获得10
刚刚
刚刚
祝睿彦发布了新的文献求助20
1秒前
波谷发布了新的文献求助10
1秒前
2秒前
bkagyin应助狗十七采纳,获得10
2秒前
斯文败类应助你hao采纳,获得10
3秒前
2Q完成签到,获得积分10
3秒前
科研小白发布了新的文献求助10
4秒前
思源应助肖雪依采纳,获得10
4秒前
4秒前
fugdu发布了新的文献求助10
4秒前
4秒前
温婉的夜山完成签到 ,获得积分10
5秒前
简单千儿发布了新的文献求助20
5秒前
6秒前
6秒前
科研通AI6应助落后乐荷采纳,获得30
6秒前
卷卷发布了新的文献求助10
6秒前
6秒前
传奇3应助苗条映寒采纳,获得10
6秒前
科研通AI6应助sunyanghu369采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
科研通AI6应助xixi采纳,获得10
8秒前
紫气东来应助多不多乐采纳,获得10
8秒前
8秒前
飘逸绾绾完成签到,获得积分10
8秒前
爆米花应助科研的小迷妹采纳,获得10
9秒前
B站萧亚轩发布了新的文献求助10
9秒前
小陈完成签到,获得积分10
9秒前
9秒前
梓萱完成签到,获得积分10
10秒前
研友_VZG7GZ应助zgliu78采纳,获得10
10秒前
Moonlight完成签到,获得积分10
10秒前
在远方发布了新的文献求助10
11秒前
jusong完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342