Mining the accident causes of railway dangerous goods transportation: A Logistics-DT-TFP based approach

关联规则学习 Lift(数据挖掘) 树遍历 事故(哲学) 决策树 数据挖掘 工程类 危险品 计算机科学 运输工程 算法 哲学 认识论
作者
Huiyan Fa,Bin Shuai,Zhenlong Yang,Yifan Niu,Wencheng Huang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:195: 107421-107421 被引量:10
标识
DOI:10.1016/j.aap.2023.107421
摘要

Accurately and quickly mining the hidden information in railway dangerous goods transportation (RDGT) accident reports has great significance for its safety management. In this paper, a data mining method Logistics-DT-TFP is proposed for analysing the causes of RDGT accidents. Firstly, analyse the transportation process, extract the cause of the accident, and classify the severity of the accident. Then, using ordered multi-classification Logistic regression for correlation calculation, qualitatively judge and quantitatively analyse the relationship between each cause and the severity of the accident. The feature tags of the Decision Tree (DT) are screened, the C5.0 algorithm is used to obtain the accident coupling rules. Next, the FP-Growth algorithm is used to mine frequent itemsets, and TOP-K is used to improve it and output effective association rules with the degree of lift as the indicator, which avoids repeated traversal of the database, shortens the time complexity, and reduces the impact of the minimum support setting on the calculation results. The degree of lift among the causes in the coupling chain is calculated as a complement to the extraction of coupling rules. Finally, based on the analysis and mining results of case study, the management strategies for railway dangerous goods are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
念梦发布了新的文献求助10
刚刚
田様应助Yingkun_Xu采纳,获得30
1秒前
bkagyin应助TYW采纳,获得10
1秒前
lulu发布了新的文献求助10
1秒前
张瑞彬完成签到,获得积分10
1秒前
彭于晏应助张俊伟采纳,获得10
1秒前
2秒前
silicate完成签到,获得积分10
2秒前
学习发布了新的文献求助10
2秒前
3秒前
dd发布了新的文献求助10
3秒前
科研通AI5应助hi采纳,获得10
3秒前
峥2发布了新的文献求助10
4秒前
DDL消失完成签到 ,获得积分10
5秒前
失眠的剑完成签到,获得积分10
5秒前
科研通AI5应助吱吱采纳,获得10
5秒前
5秒前
zhu发布了新的文献求助20
6秒前
乐观的颦发布了新的文献求助10
6秒前
烛光发布了新的文献求助10
6秒前
kelly完成签到,获得积分10
6秒前
坚果完成签到,获得积分10
7秒前
顾矜应助小金星星采纳,获得10
7秒前
上官若男应助勤劳的辉辉采纳,获得10
7秒前
领导范儿应助lulu采纳,获得10
7秒前
Pluto发布了新的文献求助10
8秒前
巴哒发布了新的文献求助10
8秒前
8秒前
rsq完成签到,获得积分10
9秒前
flysky120完成签到,获得积分10
9秒前
MacJingTing应助彼岸采纳,获得30
9秒前
9秒前
完美世界应助ZZH采纳,获得10
9秒前
Akim应助峥2采纳,获得10
11秒前
11秒前
潘潘完成签到 ,获得积分20
11秒前
再学一分钟完成签到,获得积分10
12秒前
老实紫萱发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088395
求助须知:如何正确求助?哪些是违规求助? 4303286
关于积分的说明 13410954
捐赠科研通 4129075
什么是DOI,文献DOI怎么找? 2261109
邀请新用户注册赠送积分活动 1265259
关于科研通互助平台的介绍 1199722