GenAI against humanity: nefarious applications of generative artificial intelligence and large language models

人性 生成语法 人工智能 计算机科学 认知科学 哲学 心理学 神学
作者
Emilio Ferrara
出处
期刊:Journal of computational social science [Springer Nature]
被引量:21
标识
DOI:10.1007/s42001-024-00250-1
摘要

Abstract Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) are marvels of technology; celebrated for their prowess in natural language processing and multimodal content generation, they promise a transformative future. But as with all powerful tools, they come with their shadows. Picture living in a world where deepfakes are indistinguishable from reality, where synthetic identities orchestrate malicious campaigns, and where targeted misinformation or scams are crafted with unparalleled precision. Welcome to the darker side of GenAI applications. This article is not just a journey through the meanders of potential misuse of GenAI and LLMs, but also a call to recognize the urgency of the challenges ahead. As we navigate the seas of misinformation campaigns, malicious content generation, and the eerie creation of sophisticated malware, we’ll uncover the societal implications that ripple through the GenAI revolution we are witnessing. From AI-powered botnets on social media platforms to the unnerving potential of AI to generate fabricated identities, or alibis made of synthetic realities, the stakes have never been higher. The lines between the virtual and the real worlds are blurring, and the consequences of potential GenAI’s nefarious applications impact us all. This article serves both as a synthesis of rigorous research presented on the risks of GenAI and misuse of LLMs and as a thought-provoking vision of the different types of harmful GenAI applications we might encounter in the near future, and some ways we can prepare for them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰硝壤应助阔达曲奇采纳,获得10
1秒前
yin完成签到,获得积分10
1秒前
1234567xjy完成签到,获得积分20
2秒前
清脆笑柳完成签到,获得积分10
2秒前
zxh完成签到,获得积分10
2秒前
3秒前
今后应助Jiaxiao采纳,获得10
4秒前
LU完成签到 ,获得积分10
4秒前
5秒前
5秒前
小二郎应助追风的人偶采纳,获得10
5秒前
6秒前
xxxxxj完成签到 ,获得积分10
8秒前
NexusExplorer应助zmw采纳,获得10
8秒前
9秒前
草木发布了新的文献求助10
10秒前
高挑的荆发布了新的文献求助30
11秒前
南京喵科大学完成签到,获得积分10
11秒前
12秒前
15秒前
超级的鞅发布了新的文献求助10
16秒前
Accepted应助爱听歌的艳采纳,获得10
17秒前
科研通AI2S应助胡桃夹馍采纳,获得10
17秒前
103921wjk完成签到,获得积分10
18秒前
赘婿应助小蜻蜓采纳,获得10
19秒前
科研yu完成签到 ,获得积分10
19秒前
19秒前
20秒前
缥缈电脑发布了新的文献求助10
20秒前
外向蜡烛完成签到 ,获得积分10
20秒前
21秒前
hu完成签到,获得积分10
21秒前
高扬发布了新的文献求助10
23秒前
23秒前
23秒前
高挑的荆完成签到,获得积分10
23秒前
nn发布了新的文献求助10
24秒前
科研通AI2S应助Henry采纳,获得10
24秒前
24秒前
CodeCraft应助活泼的牛排采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237