A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Siwen Yin,Yongpeng Xie,Yong Chen,Fajin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
被引量:12
标识
DOI:10.1097/js9.0000000000001194
摘要

Background: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC. Methods: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. Results: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively. Conclusions: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱因斯坦那个和我一样的科学家完成签到,获得积分10
1秒前
秦淮发布了新的文献求助10
1秒前
Jodie发布了新的文献求助10
2秒前
陶醉大侠完成签到,获得积分10
4秒前
HRXYZ完成签到,获得积分10
4秒前
梁jj完成签到,获得积分10
6秒前
sylvia完成签到,获得积分10
6秒前
小遇完成签到 ,获得积分10
7秒前
9秒前
12秒前
小言发布了新的文献求助10
13秒前
liu发布了新的文献求助30
15秒前
victor完成签到,获得积分10
16秒前
16秒前
Zx_1993应助hangboy采纳,获得30
17秒前
sqqq完成签到 ,获得积分10
18秒前
2953685951完成签到,获得积分10
19秒前
会飞的猪完成签到,获得积分10
20秒前
讨厌鬼完成签到,获得积分10
23秒前
夏未央完成签到,获得积分10
23秒前
小言完成签到,获得积分20
26秒前
MetaMysteria完成签到,获得积分10
28秒前
test_20251231发布了新的文献求助50
30秒前
科研通AI2S应助123456采纳,获得10
30秒前
30秒前
胡蝶完成签到 ,获得积分10
32秒前
无情的井完成签到,获得积分10
32秒前
故事细腻完成签到 ,获得积分10
33秒前
tangz发布了新的文献求助10
33秒前
张姚发布了新的文献求助10
33秒前
完美世界应助XIEQ采纳,获得10
34秒前
whoKnows应助Tom采纳,获得20
36秒前
cc发布了新的文献求助10
37秒前
bkagyin应助科研通管家采纳,获得10
39秒前
1101592875应助科研通管家采纳,获得10
39秒前
科目三应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
思源应助科研通管家采纳,获得30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866