A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Yin Su,Yongpeng Xie,Yong Chen,Faqin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001194
摘要

Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC.MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve.A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P<0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively.A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过飞瑶发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
pigzhu完成签到,获得积分10
4秒前
吱哦周完成签到,获得积分20
5秒前
tanrui发布了新的文献求助10
5秒前
6秒前
Ya完成签到,获得积分10
7秒前
7秒前
ep_bhw发布了新的文献求助10
8秒前
8秒前
8秒前
偷乐完成签到,获得积分10
9秒前
卟噜完成签到,获得积分10
9秒前
xls发布了新的文献求助10
9秒前
解泽星发布了新的文献求助10
10秒前
10秒前
妙奇完成签到,获得积分10
10秒前
11秒前
13秒前
研友_bZzkR8发布了新的文献求助30
13秒前
13秒前
Llt完成签到,获得积分10
13秒前
明理的晓绿完成签到,获得积分10
14秒前
慕青应助Ya采纳,获得10
15秒前
16秒前
Llt发布了新的文献求助10
17秒前
18秒前
启清发布了新的文献求助30
19秒前
qiuqiu完成签到,获得积分10
19秒前
wqc2060发布了新的文献求助10
19秒前
19秒前
顾矜应助lim采纳,获得10
19秒前
FFFFF完成签到 ,获得积分0
20秒前
Lucas应助ep_bhw采纳,获得10
20秒前
20秒前
领导范儿应助Akiii_采纳,获得10
21秒前
153495159完成签到,获得积分10
22秒前
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269548
求助须知:如何正确求助?哪些是违规求助? 2909142
关于积分的说明 8348077
捐赠科研通 2579432
什么是DOI,文献DOI怎么找? 1402820
科研通“疑难数据库(出版商)”最低求助积分说明 655523
邀请新用户注册赠送积分活动 634808