A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Siwen Yin,Yongpeng Xie,Yong Chen,Fajin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
被引量:12
标识
DOI:10.1097/js9.0000000000001194
摘要

Background: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC. Methods: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. Results: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively. Conclusions: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
美满的水卉完成签到,获得积分10
1秒前
仇敌克星完成签到,获得积分10
2秒前
qiaoxi完成签到,获得积分10
3秒前
ChemPhys完成签到 ,获得积分10
5秒前
秋风之墩完成签到,获得积分10
7秒前
xiaozhao123完成签到,获得积分20
10秒前
手握灵珠常奋笔完成签到,获得积分10
12秒前
regene完成签到,获得积分10
12秒前
应急食品完成签到,获得积分10
12秒前
13秒前
XIAOJU_U完成签到 ,获得积分10
16秒前
简奥斯汀完成签到 ,获得积分10
17秒前
xiaozhao123发布了新的文献求助10
20秒前
Sleven完成签到,获得积分10
22秒前
xzgwbh完成签到,获得积分10
26秒前
阜睿完成签到 ,获得积分10
29秒前
一个漂流瓶完成签到,获得积分10
29秒前
wzt发布了新的文献求助10
30秒前
tetrakis完成签到,获得积分10
34秒前
jfeng完成签到,获得积分10
37秒前
莓啤汽完成签到 ,获得积分10
37秒前
米博士完成签到,获得积分10
40秒前
mayberichard完成签到,获得积分10
40秒前
斯文远望完成签到,获得积分10
41秒前
test07完成签到,获得积分10
43秒前
nusiew完成签到,获得积分10
45秒前
ZHZ完成签到,获得积分10
45秒前
郑成灿完成签到 ,获得积分10
45秒前
陈一完成签到,获得积分10
47秒前
优雅的千雁完成签到,获得积分10
56秒前
56秒前
muzi完成签到,获得积分10
57秒前
etrh完成签到 ,获得积分10
1分钟前
1分钟前
桃子完成签到 ,获得积分10
1分钟前
lili完成签到 ,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
Haibrar完成签到 ,获得积分10
1分钟前
da49完成签到,获得积分10
1分钟前
罗马没有马完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559