A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Yin Su,Yongpeng Xie,Yong Chen,Faqin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001194
摘要

Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC.MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve.A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P<0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively.A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助太叔凡儿采纳,获得10
刚刚
研友_08ozgZ完成签到,获得积分10
1秒前
G1997完成签到 ,获得积分10
1秒前
我没那么郝完成签到,获得积分10
2秒前
3秒前
倪小呆发布了新的文献求助10
3秒前
相信发布了新的文献求助10
3秒前
希望天下0贩的0应助CC采纳,获得10
4秒前
4秒前
5秒前
情怀应助壮观不斜采纳,获得10
5秒前
a怪完成签到,获得积分10
6秒前
唐诗蕾完成签到,获得积分10
6秒前
LLLLL关注了科研通微信公众号
6秒前
张必雨完成签到,获得积分10
6秒前
搜集达人应助爱吃草莓采纳,获得10
7秒前
7秒前
太叔凡儿完成签到,获得积分10
7秒前
7秒前
8秒前
我是波少完成签到,获得积分10
9秒前
赵梦鸢发布了新的文献求助10
9秒前
996完成签到,获得积分10
9秒前
太叔凡儿发布了新的文献求助10
9秒前
合适冷霜完成签到 ,获得积分20
10秒前
10秒前
起司完成签到,获得积分10
10秒前
xiaojiang发布了新的文献求助10
11秒前
lucaslucas完成签到,获得积分10
11秒前
深情安青应助友好驳采纳,获得10
11秒前
江梦松发布了新的文献求助10
12秒前
鱼叔完成签到,获得积分10
12秒前
12秒前
点击获取发布了新的文献求助30
12秒前
平平无奇种花小天才给sunrise的求助进行了留言
12秒前
13831555290完成签到,获得积分10
13秒前
橙子完成签到,获得积分10
13秒前
13秒前
我是老大应助赵梦鸢采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412