亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Siwen Yin,Yongpeng Xie,Yong Chen,Fajin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
被引量:12
标识
DOI:10.1097/js9.0000000000001194
摘要

Background: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC. Methods: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. Results: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively. Conclusions: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一念莲花舟完成签到 ,获得积分10
7秒前
wzm发布了新的文献求助10
12秒前
团子发布了新的文献求助20
16秒前
把饭拼好给你完成签到 ,获得积分10
18秒前
ice完成签到,获得积分10
22秒前
joysa完成签到,获得积分10
31秒前
小马甲应助浪里白条采纳,获得10
34秒前
35秒前
czcmh完成签到 ,获得积分0
38秒前
一头熊发布了新的文献求助10
39秒前
42秒前
善学以致用应助周依依采纳,获得10
43秒前
小二郎应助hhhhhh采纳,获得10
43秒前
44秒前
浪里白条发布了新的文献求助10
47秒前
Hematology发布了新的文献求助10
48秒前
48秒前
小泽发布了新的文献求助10
53秒前
wzm完成签到,获得积分10
58秒前
团子完成签到,获得积分20
58秒前
Hematology完成签到,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
大个应助迅速的岩采纳,获得10
1分钟前
JaneChen完成签到 ,获得积分10
1分钟前
sevry应助科研通管家采纳,获得10
1分钟前
今后应助迅速的岩采纳,获得10
1分钟前
1分钟前
1分钟前
周依依发布了新的文献求助10
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
汪凤完成签到 ,获得积分10
2分钟前
M_vil发布了新的文献求助10
2分钟前
xing完成签到,获得积分10
2分钟前
华仔应助xing采纳,获得10
2分钟前
2分钟前
muliushang完成签到 ,获得积分10
2分钟前
迅速的岩发布了新的文献求助10
2分钟前
orixero应助M_vil采纳,获得30
2分钟前
蛙蛙完成签到 ,获得积分10
2分钟前
Yuan完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634690
求助须知:如何正确求助?哪些是违规求助? 4731782
关于积分的说明 14988874
捐赠科研通 4792418
什么是DOI,文献DOI怎么找? 2559500
邀请新用户注册赠送积分活动 1519811
关于科研通互助平台的介绍 1479917