亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Siwen Yin,Yongpeng Xie,Yong Chen,Fajin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
被引量:12
标识
DOI:10.1097/js9.0000000000001194
摘要

Background: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC. Methods: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. Results: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively. Conclusions: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助冯宇采纳,获得10
1秒前
1秒前
sss2021完成签到,获得积分10
1秒前
糟糕的学姐完成签到 ,获得积分10
4秒前
5秒前
西蓝花战士完成签到 ,获得积分10
6秒前
10秒前
12秒前
美丽的依霜完成签到 ,获得积分10
13秒前
14秒前
rui发布了新的文献求助10
14秒前
Panther完成签到,获得积分10
15秒前
lujiajia完成签到,获得积分10
16秒前
小明月完成签到,获得积分10
17秒前
Sharin完成签到,获得积分20
17秒前
xiaowang完成签到 ,获得积分10
17秒前
科研通AI6应助乐观凝荷采纳,获得10
19秒前
19秒前
21秒前
rui完成签到,获得积分10
24秒前
26秒前
Xujiamin发布了新的文献求助10
27秒前
miki完成签到 ,获得积分10
27秒前
fafa完成签到,获得积分10
33秒前
胡美玲完成签到,获得积分20
37秒前
Xujiamin完成签到,获得积分10
38秒前
44秒前
46秒前
Caixtmx完成签到 ,获得积分10
47秒前
胡林发布了新的文献求助10
48秒前
48秒前
呵呵发布了新的文献求助10
49秒前
刘瀚臻完成签到,获得积分10
49秒前
月亮完成签到 ,获得积分10
49秒前
刘瀚臻发布了新的文献求助10
52秒前
moyu123发布了新的文献求助10
52秒前
57秒前
充电宝应助刘瀚臻采纳,获得10
58秒前
oleskarabach发布了新的文献求助10
58秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890100
捐赠科研通 4727293
什么是DOI,文献DOI怎么找? 2545926
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236