A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study

医学 膀胱切除术 膀胱癌 列线图 回顾性队列研究 比例危险模型 多元分析 无线电技术 多元统计 肿瘤科 放射科 癌症 内科学 机器学习 计算机科学
作者
Zongjie Wei,Yingjie Xv,Huayun Liu,Yang Li,Siwen Yin,Yongpeng Xie,Yong Chen,Fajin Lv,Qing Jiang,Li Feng,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:12
标识
DOI:10.1097/js9.0000000000001194
摘要

Background: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a deep learning (DL) model based on preoperative CT for predicting post-cystectomy overall survival in patients with MIBC. Methods: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation and external validation sets. A deep learning model incorporated the convolutional block attention module (CBAM) was built for predicting overall survival using preoperative CT images. We assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. Results: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95%CI: 0.627-0.798) in the internal validation set and 0.685 (95%CI: 0.586-0.765) in external validation set, respectively. Conclusions: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
777完成签到,获得积分10
刚刚
鱼不鱼发布了新的文献求助10
刚刚
浮游应助李闻闻采纳,获得10
刚刚
47完成签到,获得积分10
1秒前
HMX完成签到,获得积分10
1秒前
1秒前
隐形曼青应助Fiona采纳,获得30
2秒前
香蕉觅云应助zSmart采纳,获得10
4秒前
英姑应助柔弱翎采纳,获得30
5秒前
5秒前
鱼不鱼完成签到,获得积分10
7秒前
8秒前
彭半梦发布了新的文献求助10
8秒前
env完成签到,获得积分10
9秒前
文艺的曼柔完成签到 ,获得积分10
9秒前
碧蓝的盼夏完成签到,获得积分10
9秒前
单薄茗完成签到,获得积分10
10秒前
10秒前
科研通AI6应助木棉哆哆采纳,获得10
10秒前
雪凝清霜发布了新的文献求助10
10秒前
11秒前
刘稀完成签到,获得积分10
11秒前
miaomiao完成签到,获得积分10
12秒前
陆菱柒发布了新的文献求助10
12秒前
12秒前
阔达的金鱼完成签到,获得积分10
12秒前
是我完成签到,获得积分10
12秒前
iuuu发布了新的文献求助10
13秒前
lhy发布了新的文献求助10
13秒前
14秒前
Lily完成签到,获得积分10
14秒前
14秒前
彭半梦完成签到,获得积分10
14秒前
15秒前
易晨曦发布了新的文献求助10
15秒前
聪明的可愁完成签到,获得积分10
15秒前
核桃发布了新的文献求助10
15秒前
15秒前
wanci应助xzh采纳,获得10
15秒前
LY完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598