An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 试验装置 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 电气工程 程序设计语言
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:358: 122553-122553 被引量:34
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风止发布了新的文献求助10
刚刚
陆佰发布了新的文献求助10
1秒前
热心鱼完成签到,获得积分10
2秒前
大模型应助1111采纳,获得10
2秒前
3秒前
仙女完成签到 ,获得积分10
4秒前
顺心靖雁完成签到,获得积分10
4秒前
CipherSage应助Merryonwine采纳,获得10
5秒前
gjx完成签到,获得积分10
5秒前
胡江完成签到,获得积分10
5秒前
叶子完成签到 ,获得积分10
5秒前
直率路人完成签到,获得积分20
6秒前
跟狗问路发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
文艺怀亦应助甘特采纳,获得10
8秒前
8秒前
9秒前
陆佰完成签到,获得积分10
9秒前
hannah完成签到,获得积分10
9秒前
科研通AI2S应助王子采纳,获得10
11秒前
Lucas应助鲸鱼采纳,获得10
11秒前
轧贝葡胺完成签到,获得积分10
12秒前
希音发布了新的文献求助10
12秒前
小郁发布了新的文献求助10
12秒前
QQ完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
丘比特应助waayu采纳,获得10
16秒前
17秒前
天天快乐应助124cndhaP采纳,获得10
18秒前
Anderk完成签到,获得积分10
18秒前
星野发布了新的文献求助10
18秒前
19秒前
噜啦啦发布了新的文献求助10
19秒前
kk发布了新的文献求助10
20秒前
无止完成签到,获得积分10
20秒前
lml发布了新的文献求助10
20秒前
20秒前
kun关注了科研通微信公众号
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142670
求助须知:如何正确求助?哪些是违规求助? 4340867
关于积分的说明 13518566
捐赠科研通 4180930
什么是DOI,文献DOI怎么找? 2292666
邀请新用户注册赠送积分活动 1293293
关于科研通互助平台的介绍 1235858