An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 试验装置 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 电气工程 程序设计语言
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:358: 122553-122553 被引量:34
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助寒冷的傥采纳,获得10
1秒前
咿呀咿呀哟完成签到,获得积分0
2秒前
2秒前
hana完成签到,获得积分10
4秒前
充电宝应助专注的易文采纳,获得10
5秒前
叶子仪完成签到,获得积分20
5秒前
6秒前
7秒前
刘茂甫发布了新的文献求助10
8秒前
机灵班应助xin_qin_Wei采纳,获得10
9秒前
叶子仪发布了新的文献求助10
9秒前
酷酷的雅山完成签到,获得积分10
9秒前
小熊枕头完成签到,获得积分10
11秒前
13秒前
Micheal完成签到 ,获得积分10
14秒前
16秒前
apple红了完成签到 ,获得积分10
17秒前
18秒前
Charles完成签到,获得积分10
18秒前
19秒前
19秒前
woodenfish发布了新的文献求助30
20秒前
冬夜完成签到 ,获得积分10
20秒前
biubiu发布了新的文献求助10
22秒前
22秒前
丘比特应助三杯薄荷水采纳,获得10
24秒前
25秒前
02发布了新的文献求助10
28秒前
槿萱完成签到,获得积分10
28秒前
jjf发布了新的文献求助10
28秒前
听话的延恶完成签到 ,获得积分10
29秒前
共享精神应助舒心的冰烟采纳,获得10
30秒前
nnnd77完成签到,获得积分10
30秒前
31秒前
烟花应助woodenfish采纳,获得10
32秒前
五块墓碑完成签到,获得积分10
33秒前
34秒前
灵巧胜发布了新的文献求助10
34秒前
34秒前
bab发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298490
求助须知:如何正确求助?哪些是违规求助? 4447022
关于积分的说明 13841382
捐赠科研通 4332463
什么是DOI,文献DOI怎么找? 2378206
邀请新用户注册赠送积分活动 1373449
关于科研通互助平台的介绍 1339015