An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 电气工程 程序设计语言
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:358: 122553-122553
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zy发布了新的文献求助10
1秒前
秋骊完成签到,获得积分10
4秒前
mouxq发布了新的文献求助10
5秒前
znhy关注了科研通微信公众号
6秒前
略略完成签到,获得积分10
7秒前
哒哒完成签到,获得积分10
7秒前
7秒前
打打应助wodetaiyangLLL采纳,获得10
8秒前
SSS完成签到,获得积分10
8秒前
香蕉觅云应助鲤鱼灵阳采纳,获得10
10秒前
10秒前
124332发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
ly完成签到,获得积分20
14秒前
Jimmy_King完成签到,获得积分10
14秒前
下次见完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
onn完成签到,获得积分20
21秒前
ly发布了新的文献求助10
21秒前
22秒前
zhanghuan完成签到 ,获得积分10
22秒前
田南松发布了新的文献求助10
23秒前
23秒前
ONE完成签到,获得积分10
24秒前
24秒前
25秒前
jinxiao留下了新的社区评论
26秒前
雾失楼台发布了新的文献求助30
26秒前
onn发布了新的文献求助60
26秒前
火星上莛发布了新的文献求助10
26秒前
daiyu发布了新的文献求助10
29秒前
XZY发布了新的文献求助10
30秒前
慕青应助勤劳的乐天采纳,获得10
32秒前
桐桐应助蹬三轮的渣男采纳,获得10
33秒前
搜集达人应助240325采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268032
求助须知:如何正确求助?哪些是违规求助? 2907423
关于积分的说明 8342014
捐赠科研通 2578006
什么是DOI,文献DOI怎么找? 1401543
科研通“疑难数据库(出版商)”最低求助积分说明 655061
邀请新用户注册赠送积分活动 634140