An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 程序设计语言 电气工程
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:358: 122553-122553
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
PL发布了新的文献求助10
1秒前
fei8047完成签到,获得积分10
3秒前
脑洞疼应助DavidXie采纳,获得10
3秒前
传奇3应助赚大钱采纳,获得10
4秒前
从容的鹰发布了新的文献求助10
5秒前
汉堡包应助满天星辰采纳,获得30
5秒前
6秒前
6秒前
SciGPT应助西子阳采纳,获得10
6秒前
星黛Lu完成签到,获得积分10
6秒前
郑郑发布了新的文献求助10
6秒前
7秒前
酸酸完成签到,获得积分10
7秒前
blue发布了新的文献求助30
8秒前
勤奋的从菡完成签到 ,获得积分10
8秒前
8秒前
10秒前
小菜鸡完成签到,获得积分10
10秒前
咖褐发布了新的文献求助10
11秒前
11秒前
云在青天水在瓶完成签到,获得积分20
12秒前
无语的孤丹完成签到,获得积分10
12秒前
小菜鸡发布了新的文献求助10
12秒前
12秒前
小王发布了新的文献求助10
14秒前
乱武发布了新的文献求助10
14秒前
zrc发布了新的文献求助30
15秒前
15秒前
黄文森发布了新的文献求助20
15秒前
涛1118发布了新的文献求助10
16秒前
17秒前
Lucas应助YOGA1115采纳,获得10
17秒前
xielunwen发布了新的文献求助30
18秒前
18秒前
19秒前
吧啦吧啦完成签到,获得积分10
20秒前
隐形曼青应助西子阳采纳,获得10
21秒前
佳佳应助涛1118采纳,获得10
21秒前
完美世界应助涛1118采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061