An innovative interpretable combined learning model for wind speed forecasting

可解释性 风速 风力发电 计算机科学 人工神经网络 均方误差 集合(抽象数据类型) 自回归积分移动平均 时间序列 人工智能 机器学习 气象学 统计 数学 工程类 物理 电气工程 程序设计语言
作者
Pei Du,Dongchuan Yang,Yanzhao Li,Jianzhou Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:358: 122553-122553
标识
DOI:10.1016/j.apenergy.2023.122553
摘要

Wind energy is taken as one of the most potential green energy sources, whose accurate and stable prediction is important to improve the efficiency of wind turbines as well as to guarantee the power balance and economic dispatch of power systems and equipment safety. However, the random and fluctuating nature of wind speed poses a great risk to wind power grid connections. To address the issues of low prediction performance and lack of interpretable analysis in most past studies, this research proposes an interpretable combined learning model for wind speed time series prediction by combining linear models, different neural networks, and deep learning by introducing interpretable TFT models. To test the effectiveness of the forecasting models, the presented combined model is verified using eight wind speed datasets covering four seasons collected from two wind farms in Shaanxi, China. The experimental results show that the average root mean squared error of the one-step, two-step, and three-step predictions on the eight datasets for proposed model are 0.3448, 0.4586 and 0.6164, respectively, which are much better than the six single models and the six combined models with different strategies. And proposed model outperforms the single model and combined model in most cases, with 86.80% and 92.01% of the DM values greater than the corresponding critical values when the significance level is set to 0.01 and 0.1, respectively. Finally, the proposed model is discussed and analyzed in depth through interpretability analysis of the combined model, which further validates the potential of the model and also provides a reference for other time series forecasting studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助艾米尼采纳,获得10
2秒前
3秒前
科研通AI6应助矮小的万声采纳,获得10
5秒前
小小k发布了新的文献求助80
5秒前
迟意发布了新的文献求助10
6秒前
7秒前
7秒前
共享精神应助文静采纳,获得10
7秒前
8秒前
Hh发布了新的文献求助10
8秒前
SciGPT应助愉快白亦采纳,获得10
8秒前
8秒前
Lin琳发布了新的文献求助10
9秒前
闪闪的屁股完成签到,获得积分10
10秒前
11秒前
12秒前
12345发布了新的文献求助10
13秒前
13秒前
KingYugene发布了新的文献求助10
14秒前
sigmund完成签到,获得积分20
15秒前
15秒前
乐乐应助遇疯儿采纳,获得10
16秒前
16秒前
17秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
17秒前
浮游应助红糖小糍粑采纳,获得10
17秒前
Criminology34应助红糖小糍粑采纳,获得10
17秒前
18秒前
要减肥的半山完成签到,获得积分10
18秒前
19秒前
Lin琳完成签到,获得积分20
20秒前
文静发布了新的文献求助10
20秒前
小小超发布了新的文献求助10
20秒前
艾米尼发布了新的文献求助10
20秒前
KingYugene完成签到,获得积分10
21秒前
慕青应助hahaagain采纳,获得10
21秒前
22秒前
小二郎应助无奈的鞋子采纳,获得10
22秒前
yuanyuan完成签到,获得积分10
23秒前
科研通AI6应助Hh采纳,获得10
23秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258