亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

计算机科学 区间(图论) 数据挖掘 人工智能 残余物 特征提取 分解 计量经济学 机器学习 算法 数学 生态学 组合数学 生物
作者
Jujie Wang,Jing Liu,Weiyi Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122891-122891 被引量:19
标识
DOI:10.1016/j.eswa.2023.122891
摘要

For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of high-dimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting interval-valued stock prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Criminology34举报Raymond求助涉嫌违规
3秒前
空溟fever发布了新的文献求助10
3秒前
hx发布了新的文献求助10
4秒前
大气亦巧完成签到,获得积分10
4秒前
10秒前
18秒前
领导范儿应助谛因采纳,获得50
18秒前
20秒前
李健应助赵振辉采纳,获得10
22秒前
romance发布了新的文献求助10
24秒前
斯文败类应助hx采纳,获得10
27秒前
49秒前
level完成签到 ,获得积分10
49秒前
54秒前
空溟fever完成签到,获得积分10
59秒前
1分钟前
caca完成签到,获得积分0
1分钟前
matrixu完成签到,获得积分10
1分钟前
李爱国应助南威采纳,获得10
1分钟前
1分钟前
赵振辉发布了新的文献求助10
1分钟前
1分钟前
Nightfall完成签到,获得积分10
2分钟前
赵振辉完成签到,获得积分10
2分钟前
2分钟前
花花公子完成签到,获得积分10
2分钟前
Nightfall发布了新的文献求助10
2分钟前
无极微光应助xiaodengdream采纳,获得20
2分钟前
旺旺大礼包完成签到,获得积分10
2分钟前
KSung完成签到,获得积分10
2分钟前
2分钟前
说好不吃肥肉的完成签到,获得积分10
2分钟前
2分钟前
花海完成签到 ,获得积分10
2分钟前
南威发布了新的文献求助10
2分钟前
Cell完成签到 ,获得积分10
2分钟前
小白完成签到 ,获得积分10
2分钟前
Kapur关注了科研通微信公众号
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639594
求助须知:如何正确求助?哪些是违规求助? 4749168
关于积分的说明 15006790
捐赠科研通 4797774
什么是DOI,文献DOI怎么找? 2563840
邀请新用户注册赠送积分活动 1522769
关于科研通互助平台的介绍 1482471