An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

计算机科学 区间(图论) 数据挖掘 人工智能 残余物 特征提取 分解 计量经济学 机器学习 算法 数学 生态学 组合数学 生物
作者
Jujie Wang,Jing Liu,Weiyi Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122891-122891 被引量:3
标识
DOI:10.1016/j.eswa.2023.122891
摘要

For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of high-dimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting interval-valued stock prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haru完成签到,获得积分10
刚刚
康康完成签到,获得积分10
刚刚
1秒前
义气的巨人完成签到,获得积分10
1秒前
ned4speed完成签到,获得积分10
1秒前
甜甜圈完成签到 ,获得积分10
1秒前
xiaohanzai88完成签到,获得积分10
2秒前
phoenix完成签到,获得积分0
2秒前
Yu完成签到 ,获得积分10
2秒前
AU完成签到 ,获得积分10
2秒前
sdfwsdfsd完成签到,获得积分10
2秒前
义气凡阳完成签到 ,获得积分10
2秒前
竹子完成签到,获得积分10
3秒前
079发布了新的文献求助10
3秒前
release枫完成签到,获得积分10
4秒前
鬼见愁应助ANEWKID采纳,获得10
4秒前
zhoushaoyun2000完成签到,获得积分10
5秒前
e394282438完成签到,获得积分10
6秒前
毛八帝丶完成签到,获得积分10
7秒前
半圆亻完成签到 ,获得积分10
7秒前
雪白的紫翠完成签到 ,获得积分10
7秒前
imlancelot完成签到 ,获得积分10
7秒前
8秒前
zjzjzjzjzj完成签到 ,获得积分10
8秒前
Darsine完成签到,获得积分10
8秒前
geohr发布了新的文献求助10
8秒前
9秒前
随机子应助079采纳,获得10
10秒前
喜静完成签到 ,获得积分10
10秒前
guoguo完成签到,获得积分20
11秒前
自信的冬日完成签到,获得积分10
11秒前
海心完成签到,获得积分10
11秒前
Eden完成签到,获得积分10
12秒前
张渔歌完成签到,获得积分10
13秒前
我是老大应助一路向阳采纳,获得10
13秒前
曹文鹏完成签到 ,获得积分10
13秒前
巴乔完成签到,获得积分10
13秒前
LX2xeK完成签到,获得积分10
14秒前
wf完成签到,获得积分10
14秒前
冯万里完成签到 ,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171705
求助须知:如何正确求助?哪些是违规求助? 2822489
关于积分的说明 7939622
捐赠科研通 2483179
什么是DOI,文献DOI怎么找? 1323058
科研通“疑难数据库(出版商)”最低求助积分说明 633834
版权声明 602647