An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

计算机科学 区间(图论) 数据挖掘 人工智能 残余物 特征提取 分解 计量经济学 机器学习 算法 数学 生态学 组合数学 生物
作者
Jujie Wang,Jing Liu,Weiyi Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122891-122891 被引量:3
标识
DOI:10.1016/j.eswa.2023.122891
摘要

For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of high-dimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting interval-valued stock prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王w完成签到 ,获得积分10
刚刚
1秒前
2秒前
南瓜咸杏完成签到,获得积分10
2秒前
陈甸甸完成签到,获得积分10
2秒前
韦威风发布了新的文献求助10
3秒前
3秒前
king完成签到,获得积分10
3秒前
qweerrtt发布了新的文献求助10
4秒前
余三浪完成签到,获得积分10
4秒前
5秒前
lixoii发布了新的文献求助20
5秒前
豌豆射手发布了新的文献求助10
6秒前
科研通AI2S应助k7采纳,获得10
6秒前
wszldmn完成签到,获得积分10
6秒前
坚定的亦绿完成签到,获得积分10
7秒前
7秒前
yurh完成签到,获得积分10
7秒前
小朋友完成签到,获得积分10
8秒前
华仔应助小王采纳,获得10
8秒前
彭于晏应助乔乔采纳,获得10
8秒前
8秒前
1199完成签到,获得积分10
8秒前
8秒前
南瓜完成签到 ,获得积分10
9秒前
eric曾完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
韦威风完成签到,获得积分10
12秒前
请叫我风吹麦浪应助cc采纳,获得30
12秒前
所所应助Ll采纳,获得10
12秒前
阳光的道消完成签到,获得积分10
13秒前
13秒前
13秒前
豌豆射手完成签到,获得积分10
14秒前
14秒前
桑桑发布了新的文献求助10
14秒前
领导范儿应助幸福胡萝卜采纳,获得10
15秒前
明理的小甜瓜完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762