亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

计算机科学 区间(图论) 数据挖掘 人工智能 残余物 特征提取 分解 计量经济学 机器学习 算法 数学 生态学 组合数学 生物
作者
Jujie Wang,Jing Liu,Weiyi Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122891-122891 被引量:19
标识
DOI:10.1016/j.eswa.2023.122891
摘要

For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of high-dimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting interval-valued stock prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
9秒前
任性学姐发布了新的文献求助10
11秒前
科研通AI6.1应助任性学姐采纳,获得10
24秒前
36秒前
41秒前
xzccc发布了新的文献求助10
43秒前
鲤鱼山人完成签到 ,获得积分10
43秒前
任性学姐发布了新的文献求助10
47秒前
平淡剑鬼完成签到,获得积分10
47秒前
58秒前
1分钟前
1分钟前
orixero应助任性学姐采纳,获得10
1分钟前
1分钟前
1分钟前
安静含卉发布了新的文献求助10
1分钟前
nnnick完成签到,获得积分0
1分钟前
西格玛完成签到,获得积分10
1分钟前
OKC完成签到,获得积分10
1分钟前
1分钟前
Hello应助温柔锦程采纳,获得10
1分钟前
1分钟前
sss完成签到 ,获得积分10
1分钟前
星辰大海应助安静含卉采纳,获得10
1分钟前
Selena完成签到 ,获得积分10
1分钟前
1分钟前
温柔锦程发布了新的文献求助10
2分钟前
斯文败类应助读书的时候采纳,获得10
2分钟前
李玉玲发布了新的文献求助10
2分钟前
zzz发布了新的文献求助10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
李玉玲完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
qc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
白山发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527