An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

计算机科学 区间(图论) 数据挖掘 人工智能 残余物 特征提取 分解 计量经济学 机器学习 算法 数学 生态学 生物 组合数学
作者
Jujie Wang,Jing Liu,Weiyi Jiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122891-122891 被引量:3
标识
DOI:10.1016/j.eswa.2023.122891
摘要

For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of high-dimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting interval-valued stock prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
biye6完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
核动力驴完成签到,获得积分10
2秒前
皛鱼应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
震动的小草完成签到,获得积分10
4秒前
yangya完成签到,获得积分10
5秒前
科研通AI5应助LKT采纳,获得10
5秒前
认真的焦完成签到 ,获得积分10
7秒前
111完成签到,获得积分10
7秒前
8秒前
yuehan完成签到 ,获得积分0
9秒前
海蓝鲸完成签到 ,获得积分10
10秒前
PU聚氨酯完成签到,获得积分10
13秒前
后陡门的夏天完成签到,获得积分10
13秒前
16秒前
科研通AI2S应助awedfa采纳,获得10
17秒前
852应助stinkyfish采纳,获得10
17秒前
briliian完成签到,获得积分10
17秒前
20秒前
YY完成签到,获得积分10
21秒前
赵宇宙完成签到,获得积分10
22秒前
朱博完成签到,获得积分10
23秒前
上官若男应助邱浩采纳,获得10
24秒前
论文顺利完成签到,获得积分10
24秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991118
求助须知:如何正确求助?哪些是违规求助? 3532374
关于积分的说明 11257206
捐赠科研通 3271307
什么是DOI,文献DOI怎么找? 1805404
邀请新用户注册赠送积分活动 882370
科研通“疑难数据库(出版商)”最低求助积分说明 809281