Physics-Informed Neural Network (PINN) for Solving Frictional Contact Temperature and Inversely Evaluating Relevant Input Parameters

人工神经网络 计算机科学 生物系统 材料科学 人工智能 生物
作者
Yichun Xia,Yonggang Meng
出处
期刊:Lubricants [MDPI AG]
卷期号:12 (2): 62-62 被引量:1
标识
DOI:10.3390/lubricants12020062
摘要

Ensuring precise prediction, monitoring, and control of frictional contact temperature is imperative for the design and operation of advanced equipment. Currently, the measurement of frictional contact temperature remains a formidable challenge, while the accuracy of simulation results from conventional numerical methods remains uncertain. In this study, a PINN model that incorporates physical information, such as partial differential equation (PDE) and boundary conditions, into neural networks is proposed to solve forward and inverse problems of frictional contact temperature. Compared to the traditional numerical calculation method, the preprocessing of the PINN is more convenient. Another noteworthy characteristic of the PINN is that it can combine data to obtain a more accurate temperature field and solve inverse problems to identify some unknown parameters. The experimental results substantiate that the PINN effectively resolves the forward problems of frictional contact temperature when provided with known input conditions. Additionally, the PINN demonstrates its ability to accurately predict the friction temperature field with an unknown input parameter, which is achieved by incorporating a limited quantity of easily measurable actual temperature data. The PINN can also be employed for the inverse identification of unknown parameters. Finally, the PINN exhibits potential in solving inverse problems associated with frictional contact temperature, even when multiple input parameters are unknown.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高兴的冰棍完成签到,获得积分10
1秒前
烟花应助菠萝炒饭采纳,获得10
1秒前
Christina完成签到,获得积分10
1秒前
慕青应助折镜采纳,获得10
1秒前
brave heart完成签到,获得积分10
2秒前
2秒前
星辰大海应助Alessnndre采纳,获得10
3秒前
3秒前
4秒前
4秒前
6秒前
小二郎应助唠叨的曼易采纳,获得10
8秒前
搞怪妙菱发布了新的文献求助10
9秒前
自信的宝贝完成签到,获得积分20
9秒前
lilioa85发布了新的文献求助10
9秒前
dong发布了新的文献求助10
9秒前
打工仔卷卷儿完成签到,获得积分10
9秒前
充电宝应助温柔的兔子采纳,获得10
9秒前
vn完成签到,获得积分10
9秒前
Neuro_dan完成签到,获得积分10
10秒前
雪白发卡完成签到,获得积分10
11秒前
慌慌发布了新的文献求助10
11秒前
iNk应助Godspeed采纳,获得10
11秒前
11秒前
11秒前
347完成签到,获得积分10
14秒前
Alessnndre发布了新的文献求助10
14秒前
爆米花完成签到,获得积分10
14秒前
化学完成签到,获得积分10
15秒前
Orange应助轻松的人龙采纳,获得10
17秒前
17秒前
17秒前
搬砖完成签到,获得积分10
19秒前
19秒前
乔修亚完成签到,获得积分10
19秒前
脑洞疼应助慌慌采纳,获得10
20秒前
21秒前
鱼香丸子发布了新的文献求助10
21秒前
科研通AI2S应助蚊香仔采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127287
求助须知:如何正确求助?哪些是违规求助? 2777928
关于积分的说明 7737731
捐赠科研通 2433307
什么是DOI,文献DOI怎么找? 1292923
科研通“疑难数据库(出版商)”最低求助积分说明 623009
版权声明 600484