Brg1 regulates fibroblast-myofibroblast transition to promote renal fibrosis

肌成纤维细胞 纤维化 癌症研究 基因敲除 条件基因敲除 转录因子 染色质重塑 成纤维细胞 细胞生物学 体外 化学 医学 生物 病理 内科学 表型 基因 生物化学
作者
Xiaoyan Wu,Yajun Luo,Aoqi Kang,Jiayao Ni,Ming Kong,Tao Zhang
标识
DOI:10.1101/2023.12.22.572996
摘要

Abstract Excessive fibrogenesis serves to disrupt the anatomical and functional integrity of the kidneys contributing to renal failure. Renal fibroblast is the major precursor to myofibroblast, the effector cell type of renal fibrosis. How fibroblast-myofibroblast transition (FMyT) is regulated in the kidneys remains incompletely understood. In the present study we investigated the role of Brahma related gene 1 (Brg1), a chromatin remodeling protein, in renal fibrosis focusing on mechanistic insights and translational potential. We report that Brg1 was up-regulated during FMyT both in vitro and in vivo . Brg1 deletion in fibroblasts partially blocked TGF-β induced FMyT in vitro and attenuated renal fibrosis in three different animal models. Importantly, conditional Brg1 knockout in Postn + mature myofibroblasts mitigated renal fibrosis induced by unilateral ureteral obstruction (UUO) or ischemia-reperfusion (IR) in mice. Transcriptomic analysis uncovered Prune2 as a potential target for Brg1. Brg1 interacted with E2F1 to activate Prune2 transcription during FMyT. Concordantly, Prune2 knockdown suppressed TGF-β induced FMyT in vitro and dampened renal fibrosis in mice. Mechanistically, Prune2 likely contributed to FMyT by augmenting phosphorylation and activity of the pro-fibrogenic transcription factor PU.1. Finally, small-molecule Brg1 inhibitor PFI-3 exhibited strong antifibrotic potency in established models of renal fibrosis. In conclusion, our data provide compelling evidence that BRG1 is a pivotal regulator of as well as a promising therapeutic target for renal fibrosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还可以的发布了新的文献求助10
1秒前
完美世界应助典雅的俊驰采纳,获得10
2秒前
就这样发布了新的文献求助10
3秒前
Orange应助勤恳的雨文采纳,获得10
3秒前
zero完成签到,获得积分10
4秒前
笨笨的芫完成签到 ,获得积分10
4秒前
mmx完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
CipherSage应助fanzi采纳,获得10
7秒前
CipherSage应助怡然的一斩采纳,获得10
8秒前
8秒前
Epiphany发布了新的文献求助10
9秒前
勤劳滑板完成签到,获得积分10
10秒前
慕辰发布了新的文献求助50
10秒前
星辰大海应助田兆文采纳,获得10
10秒前
10秒前
高高马里奥完成签到,获得积分10
11秒前
12秒前
TAD关闭了TAD文献求助
12秒前
酷酷元风完成签到,获得积分10
13秒前
昵称发布了新的文献求助10
13秒前
无私绿兰完成签到 ,获得积分10
13秒前
九千七发布了新的文献求助10
15秒前
16秒前
内向的冰棍应助珏珏子采纳,获得10
16秒前
脑洞疼应助危机的娩采纳,获得10
17秒前
飞星发布了新的文献求助30
17秒前
九日'发布了新的文献求助10
18秒前
18秒前
情怀应助瑶瑶乐采纳,获得10
18秒前
19秒前
20秒前
21秒前
step_stone应助国服懒羊羊采纳,获得100
22秒前
zakarya发布了新的文献求助10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271