材料科学
光热治疗
癌症免疫疗法
癌症研究
免疫疗法
生物医学中的光声成像
乳腺癌
纳米技术
光动力疗法
癌症
癌细胞
医学
化学
内科学
物理
有机化学
光学
作者
Yue Li,Zekun Du,Yuan Zhang,Xiaoying Kang,Jianwen Song,Xiaohong Chen,Yuanbo Hu,Zhimou Yang,Ji Qi,Xian Shen
标识
DOI:10.1002/adfm.202315127
摘要
Abstract High‐performance theranostic systems are of paramount importance for achieving precise image‐guided cancer immunotherapy. Here, a novel nanoplatform is presented that integrates aggregation‐induced emission luminogen (AIEgen) with prussian blue (PB) nanocatalyzer for robust cancer immunotherapy. The AIEgen with dimethylamine substitution demonstrates compelling near‐infrared (NIR) light‐induced photothermal conversion and photodynamic therapy (PDT) capabilities. By incorporating AIEgen into porous PBNPs, and further enveloped within M1 macrophage membrane, a tumor‐specific theranostic nanoagent is constructed. This strategic integration effectively constrains the molecular motion of AIEgen, leading to amplified NIR‐II fluorescence brightness and PDT attributes. Moreover, PBNPs can catalyze tumor‐overexpressed H 2 O 2 to generate oxygen to boost PDT efficacy, and PB's NIR absorption also intensifies photoacoustic imaging and photothermal effect. The integration of NIR‐II fluorescence and photoacoustic imaging provides comprehensive information for photoimmunotherapy in orthotopic breast cancer‐bearing mice. Leveraging its potent immunogenic cell death effect, the nanoagent not only significantly inhibits cancer growth, but also generates a whole‐cell therapeutic cancer vaccine to protect mice from tumor rechallenge. In highly malignant post‐surgery breast cancer models, the nanoagent enables both accurate identification of residual tumors and efficient inhibition of postoperative tumor recurrence and pulmonary metastasis. This study will offer valuable insights for creating highly efficacious and multifaceted photoimmunotherapy protocols.
科研通智能强力驱动
Strongly Powered by AbleSci AI