Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
计划发布了新的文献求助10
2秒前
歪咪发布了新的文献求助10
2秒前
2秒前
刘文辉完成签到,获得积分10
2秒前
闪闪机器猫完成签到,获得积分10
2秒前
上官若男应助Tangyartie采纳,获得10
3秒前
3秒前
文献使者完成签到,获得积分10
3秒前
酷酷的笔记本完成签到,获得积分10
4秒前
4秒前
浮游应助LL采纳,获得10
4秒前
5秒前
Lazarus完成签到,获得积分10
5秒前
5秒前
欧小嘢完成签到,获得积分10
6秒前
6秒前
Akim应助润润轩轩采纳,获得10
6秒前
7秒前
7秒前
7秒前
淡淡大山完成签到,获得积分10
7秒前
NexusExplorer应助weihuang采纳,获得10
8秒前
柠檬泡芙完成签到,获得积分10
8秒前
renjh完成签到,获得积分10
8秒前
9秒前
103x发布了新的文献求助10
9秒前
91ge完成签到 ,获得积分10
9秒前
窦无剑发布了新的文献求助10
9秒前
minggalaxy007发布了新的文献求助10
9秒前
哈基米完成签到 ,获得积分10
9秒前
小罗黑的完成签到,获得积分10
9秒前
10秒前
lyl发布了新的文献求助10
10秒前
小布丁发布了新的文献求助10
10秒前
清爽逊完成签到,获得积分20
10秒前
Owen应助阿东c采纳,获得10
10秒前
蓝书签发布了新的文献求助10
10秒前
11秒前
Lwssss发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401