亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
1秒前
迷路平安完成签到,获得积分20
12秒前
lin完成签到,获得积分10
14秒前
叙温雨发布了新的文献求助10
15秒前
搜集达人应助迷路平安采纳,获得10
18秒前
可靠幻然完成签到 ,获得积分10
20秒前
浮游应助科研通管家采纳,获得10
33秒前
ZanE完成签到,获得积分10
34秒前
李健的小迷弟应助叙温雨采纳,获得10
47秒前
科研兵完成签到 ,获得积分10
1分钟前
1分钟前
谈理想完成签到,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
2分钟前
Theta发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
WerWu完成签到,获得积分0
2分钟前
怕黑的映真完成签到,获得积分10
3分钟前
3分钟前
小李子发布了新的文献求助10
3分钟前
苹果丹烟完成签到 ,获得积分10
3分钟前
完美世界应助小李子采纳,获得10
3分钟前
3分钟前
Joshua发布了新的文献求助10
3分钟前
caca完成签到,获得积分0
4分钟前
4分钟前
4分钟前
叙温雨发布了新的文献求助10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
楠楠2001完成签到 ,获得积分10
4分钟前
今后应助TXZ06采纳,获得10
4分钟前
5分钟前
李健的小迷弟应助TXZ06采纳,获得10
5分钟前
5分钟前
TXZ06发布了新的文献求助10
5分钟前
天天快乐应助CCccCCC采纳,获得10
5分钟前
隐形曼青应助叙温雨采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291940
求助须知:如何正确求助?哪些是违规求助? 4442703
关于积分的说明 13830302
捐赠科研通 4325936
什么是DOI,文献DOI怎么找? 2374538
邀请新用户注册赠送积分活动 1369853
关于科研通互助平台的介绍 1334214