Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenyinglin发布了新的文献求助10
1秒前
江恋发布了新的文献求助10
2秒前
xiuxiuzhang发布了新的文献求助10
3秒前
3秒前
17764715645应助龙腾万里采纳,获得10
3秒前
Tangerine完成签到,获得积分10
3秒前
白给发布了新的文献求助10
3秒前
傅硕羽发布了新的文献求助10
4秒前
5秒前
扶摇直上九万里完成签到 ,获得积分10
5秒前
暮时发布了新的文献求助10
5秒前
小二郎应助Juliette采纳,获得10
7秒前
科研通AI5应助jiangsuway采纳,获得10
8秒前
急急急完成签到,获得积分20
8秒前
8秒前
8秒前
SciGPT应助zzk8089采纳,获得10
8秒前
chenyinglin完成签到,获得积分10
9秒前
10秒前
白筠233给白筠233的求助进行了留言
10秒前
q1nzang发布了新的文献求助10
11秒前
emma完成签到,获得积分10
12秒前
12秒前
肆樂柒发布了新的文献求助10
12秒前
12秒前
嘉宾完成签到,获得积分10
13秒前
rmrggy完成签到,获得积分10
13秒前
夏紫儿完成签到 ,获得积分10
14秒前
CQ完成签到,获得积分10
14秒前
14秒前
大个应助宇儿采纳,获得10
14秒前
Bismarck发布了新的文献求助10
15秒前
老实访琴完成签到,获得积分20
16秒前
彭于晏应助外汇交易员采纳,获得10
17秒前
wangchaofk完成签到,获得积分10
18秒前
Juliette发布了新的文献求助10
19秒前
大气从安完成签到 ,获得积分10
19秒前
20秒前
PDIF-CN2完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5171935
求助须知:如何正确求助?哪些是违规求助? 4362275
关于积分的说明 13583118
捐赠科研通 4210026
什么是DOI,文献DOI怎么找? 2309077
邀请新用户注册赠送积分活动 1308319
关于科研通互助平台的介绍 1255286