Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUN发布了新的文献求助10
1秒前
1秒前
珈蓝发布了新的文献求助10
1秒前
Jasper应助GLORIA采纳,获得10
1秒前
Tomin发布了新的文献求助10
2秒前
桐桐应助微末采纳,获得10
2秒前
3秒前
Richard完成签到 ,获得积分10
3秒前
青鸟飞鱼完成签到,获得积分10
3秒前
yang完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
寻鹿发布了新的文献求助10
8秒前
小曾应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
han应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
sansan完成签到 ,获得积分10
9秒前
han应助科研通管家采纳,获得10
9秒前
Theprisoners应助科研通管家采纳,获得20
9秒前
轩辕断天发布了新的文献求助10
9秒前
ding应助科研通管家采纳,获得10
9秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
鸣笛应助科研通管家采纳,获得50
10秒前
yar应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061