亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
多情向日葵完成签到,获得积分10
18秒前
可怜的课题组补助完成签到,获得积分20
35秒前
35秒前
asd完成签到,获得积分10
42秒前
Jianismye发布了新的文献求助10
44秒前
雪飞杨完成签到 ,获得积分10
50秒前
Simon应助香蕉海白采纳,获得20
56秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
59秒前
英姑应助香蕉海白采纳,获得10
1分钟前
1分钟前
自然的清涟应助行人采纳,获得10
1分钟前
解语花完成签到,获得积分10
1分钟前
小马甲应助香蕉海白采纳,获得10
1分钟前
解语花发布了新的文献求助10
1分钟前
BBBBBlue先森应助解语花采纳,获得10
1分钟前
丘比特应助解语花采纳,获得30
1分钟前
斯文败类应助解语花采纳,获得30
1分钟前
蜗牛应助解语花采纳,获得10
1分钟前
852应助解语花采纳,获得10
1分钟前
浮游应助解语花采纳,获得30
1分钟前
tuanheqi应助解语花采纳,获得180
1分钟前
1分钟前
1分钟前
乐安发布了新的文献求助10
1分钟前
王大纯完成签到,获得积分20
1分钟前
hy发布了新的文献求助10
1分钟前
小底发布了新的文献求助10
1分钟前
思源应助小底采纳,获得10
1分钟前
脆脆发布了新的文献求助10
1分钟前
钟钟完成签到,获得积分10
1分钟前
1分钟前
研友_ngX12Z完成签到 ,获得积分10
1分钟前
吴迪发布了新的文献求助10
1分钟前
脆脆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
麻麻薯完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356725
求助须知:如何正确求助?哪些是违规求助? 4488472
关于积分的说明 13972162
捐赠科研通 4389438
什么是DOI,文献DOI怎么找? 2411558
邀请新用户注册赠送积分活动 1404080
关于科研通互助平台的介绍 1378081