亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
江应怜完成签到 ,获得积分10
21秒前
wwww发布了新的文献求助10
22秒前
在水一方应助wise111采纳,获得10
34秒前
Tree_QD完成签到 ,获得积分10
35秒前
wise111完成签到,获得积分10
41秒前
43秒前
wise111发布了新的文献求助10
46秒前
计划完成签到,获得积分10
1分钟前
科研通AI2S应助wise111采纳,获得10
2分钟前
2分钟前
2分钟前
wise111发布了新的文献求助10
2分钟前
夏佳泽发布了新的文献求助10
2分钟前
酷波er应助夏佳泽采纳,获得10
2分钟前
英俊的铭应助Willing采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
可爱的函函应助wise111采纳,获得10
3分钟前
852应助wwww采纳,获得10
3分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
老实的乐儿完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Jasper应助wise111采纳,获得10
4分钟前
zznzn发布了新的文献求助10
4分钟前
wwww发布了新的文献求助10
4分钟前
桐桐应助zznzn采纳,获得10
4分钟前
4分钟前
Willing发布了新的文献求助10
4分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
5分钟前
zhubin完成签到 ,获得积分10
5分钟前
wise111发布了新的文献求助10
5分钟前
领导范儿应助wise111采纳,获得10
5分钟前
Willing完成签到,获得积分10
5分钟前
科研通AI6应助wwww采纳,获得10
5分钟前
科研通AI6应助wwww采纳,获得10
5分钟前
Xubsong发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324462
求助须知:如何正确求助?哪些是违规求助? 4465337
关于积分的说明 13894408
捐赠科研通 4357287
什么是DOI,文献DOI怎么找? 2393298
邀请新用户注册赠送积分活动 1386803
关于科研通互助平台的介绍 1357257