Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYT完成签到,获得积分10
刚刚
绝不内耗完成签到,获得积分10
1秒前
1秒前
微笑冥幽发布了新的文献求助10
2秒前
2秒前
啊哈哈发布了新的文献求助10
2秒前
YL完成签到 ,获得积分10
2秒前
猪多要求发布了新的文献求助20
3秒前
犹豫雨发布了新的文献求助10
4秒前
雨的前世完成签到 ,获得积分10
4秒前
欢喜的代容完成签到,获得积分10
4秒前
5秒前
李爱国应助王九八采纳,获得10
5秒前
小马甲应助一只生物狗采纳,获得10
5秒前
就这完成签到,获得积分10
5秒前
英姑应助朴素的天薇采纳,获得10
6秒前
kh发布了新的文献求助10
6秒前
SongRD完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助小艾采纳,获得10
8秒前
小李完成签到,获得积分10
8秒前
icewuwu完成签到,获得积分10
8秒前
impgod发布了新的文献求助10
9秒前
ohhhh完成签到,获得积分20
9秒前
10秒前
10秒前
难过奎完成签到,获得积分20
11秒前
科研通AI2S应助WZH采纳,获得30
11秒前
12秒前
张聪完成签到,获得积分10
12秒前
明亮翠桃发布了新的文献求助10
12秒前
Delire完成签到,获得积分10
13秒前
13秒前
whandzxl发布了新的文献求助10
13秒前
微笑冥幽完成签到,获得积分10
13秒前
优秀的小兔子完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
子车茗应助街道办事部采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663