Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization

计算机科学 人工神经网络 人工智能 焊接 模式识别(心理学) 计算机视觉 复合材料 材料科学
作者
Rui Zhang,Donghao Liu,Qiaofeng Bai,Liuhu Fu,Jing Hu,Jinlong Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108045-108045 被引量:6
标识
DOI:10.1016/j.engappai.2024.108045
摘要

To effectively solve the problems of low detection accuracy caused by low quality image discriminative features of X-ray weld defects, lack of intuitive representation of the defect size of existing detection algorithms, and the strong subjectivity of the detection model artificial parameter adjustment, an X-ray weld defect detection and size measurement algorithm based on neural network self-optimization is proposed. Firstly, a high-performance detection model for X-ray weld defects is constructed, and the detection accuracy is comprehensively improved through a series of featured module designs with the capabilities of feature information enhancement and multi-scale information fusion. Secondly, a model optimization strategy is proposed to obtain the optimal hyperparameter components of the model through adaptive optimization to enhance the model's self-learning capability. Finally, by constructing the mapping relationship between the actual size of defects and the screen resolution, the size measurement algorithm of weld defects is designed, and the integrated technology of defect detection and size measurement is realised. Experimental results show that the proposed algorithm achieves good results even on a small-scale X-ray weld seam defect dataset. Compared to other classical and advanced detection models used in the experiments, [email protected] is improved by an average of 16.1% and [email protected]:.95 by an average of 10.7%. The image processing speed reaches up to 68 frames per second, and the error between the size calibration and manual actual measurement is less than 0.1 cm, which can meet the real-time detection requirements for weld seam defects in practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高磊发布了新的文献求助10
1秒前
RH完成签到,获得积分10
1秒前
zhangzhen完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助zfzf0422采纳,获得10
4秒前
Wendy1204发布了新的文献求助10
5秒前
5秒前
lydy1993完成签到,获得积分10
6秒前
7秒前
滴滴哒哒完成签到 ,获得积分10
7秒前
SciGPT应助波波玛奇朵采纳,获得10
9秒前
戏言121完成签到,获得积分10
9秒前
迷人的映雁完成签到,获得积分10
10秒前
10秒前
美丽的之双完成签到,获得积分10
11秒前
阿会完成签到,获得积分10
11秒前
wqm完成签到,获得积分10
12秒前
戏言121发布了新的文献求助10
13秒前
13秒前
14秒前
优雅的流沙完成签到 ,获得积分10
15秒前
猫的海完成签到,获得积分10
15秒前
15秒前
Eason Liu完成签到,获得积分0
16秒前
Wendy1204完成签到,获得积分20
16秒前
Hello应助654采纳,获得10
16秒前
咩咩羊完成签到,获得积分10
16秒前
20秒前
lianqing完成签到,获得积分10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
21秒前
RC_Wang应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
hh应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824