Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization

计算机科学 人工神经网络 人工智能 焊接 模式识别(心理学) 计算机视觉 复合材料 材料科学
作者
Rui Zhang,Donghao Liu,Qiaofeng Bai,Liuhu Fu,Jing Hu,Jinlong Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108045-108045 被引量:6
标识
DOI:10.1016/j.engappai.2024.108045
摘要

To effectively solve the problems of low detection accuracy caused by low quality image discriminative features of X-ray weld defects, lack of intuitive representation of the defect size of existing detection algorithms, and the strong subjectivity of the detection model artificial parameter adjustment, an X-ray weld defect detection and size measurement algorithm based on neural network self-optimization is proposed. Firstly, a high-performance detection model for X-ray weld defects is constructed, and the detection accuracy is comprehensively improved through a series of featured module designs with the capabilities of feature information enhancement and multi-scale information fusion. Secondly, a model optimization strategy is proposed to obtain the optimal hyperparameter components of the model through adaptive optimization to enhance the model's self-learning capability. Finally, by constructing the mapping relationship between the actual size of defects and the screen resolution, the size measurement algorithm of weld defects is designed, and the integrated technology of defect detection and size measurement is realised. Experimental results show that the proposed algorithm achieves good results even on a small-scale X-ray weld seam defect dataset. Compared to other classical and advanced detection models used in the experiments, [email protected] is improved by an average of 16.1% and [email protected]:.95 by an average of 10.7%. The image processing speed reaches up to 68 frames per second, and the error between the size calibration and manual actual measurement is less than 0.1 cm, which can meet the real-time detection requirements for weld seam defects in practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mercury发布了新的文献求助10
1秒前
诚心文博完成签到,获得积分10
4秒前
Owen应助柔弱绝施采纳,获得10
4秒前
无闻发布了新的文献求助10
6秒前
明亮元柏发布了新的文献求助30
6秒前
小小菜鸟完成签到,获得积分10
11秒前
11秒前
杰小瑞完成签到,获得积分10
11秒前
所所应助饶天源采纳,获得10
12秒前
Owen应助looking采纳,获得10
13秒前
细心慕凝完成签到,获得积分10
13秒前
卷卷发布了新的文献求助10
13秒前
14秒前
1234hai完成签到 ,获得积分10
15秒前
drcannal发布了新的文献求助10
16秒前
不想干活应助安澜采纳,获得10
16秒前
yunuo完成签到,获得积分10
16秒前
笨笨惜天发布了新的文献求助10
18秒前
18秒前
ding应助鲨鱼采纳,获得10
19秒前
20秒前
可爱的函函应助玉梅采纳,获得10
21秒前
cherry发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
小蘑菇应助笨笨惜天采纳,获得10
25秒前
JamesPei应助耀学菜菜采纳,获得10
25秒前
饶天源发布了新的文献求助10
25秒前
looking发布了新的文献求助10
25秒前
26秒前
今后应助学术蛔虫采纳,获得10
27秒前
传奇3应助Lazyneko采纳,获得10
27秒前
29秒前
drcannal完成签到,获得积分10
30秒前
31秒前
鲨鱼完成签到,获得积分20
34秒前
畅快珩完成签到,获得积分10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238