Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization

计算机科学 人工神经网络 人工智能 焊接 模式识别(心理学) 计算机视觉 复合材料 材料科学
作者
Rui Zhang,Donghao Liu,Qiaofeng Bai,Liuhu Fu,Jing Hu,Jinlong Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108045-108045
标识
DOI:10.1016/j.engappai.2024.108045
摘要

To effectively solve the problems of low detection accuracy caused by low quality image discriminative features of X-ray weld defects, lack of intuitive representation of the defect size of existing detection algorithms, and the strong subjectivity of the detection model artificial parameter adjustment, an X-ray weld defect detection and size measurement algorithm based on neural network self-optimization is proposed. Firstly, a high-performance detection model for X-ray weld defects is constructed, and the detection accuracy is comprehensively improved through a series of featured module designs with the capabilities of feature information enhancement and multi-scale information fusion. Secondly, a model optimization strategy is proposed to obtain the optimal hyperparameter components of the model through adaptive optimization to enhance the model's self-learning capability. Finally, by constructing the mapping relationship between the actual size of defects and the screen resolution, the size measurement algorithm of weld defects is designed, and the integrated technology of defect detection and size measurement is realised. Experimental results show that the proposed algorithm achieves good results even on a small-scale X-ray weld seam defect dataset. Compared to other classical and advanced detection models used in the experiments, [email protected] is improved by an average of 16.1% and [email protected]:.95 by an average of 10.7%. The image processing speed reaches up to 68 frames per second, and the error between the size calibration and manual actual measurement is less than 0.1 cm, which can meet the real-time detection requirements for weld seam defects in practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小白采纳,获得10
刚刚
科研通AI2S应助小白采纳,获得10
刚刚
小马甲应助小白采纳,获得10
刚刚
iNk应助小白采纳,获得20
刚刚
刚刚
大鹏完成签到,获得积分10
1秒前
玥越完成签到 ,获得积分10
2秒前
mango完成签到 ,获得积分20
2秒前
李家静完成签到 ,获得积分10
3秒前
怪味基德发布了新的文献求助10
5秒前
ZH完成签到,获得积分10
7秒前
zx完成签到,获得积分10
8秒前
Billy应助风中晓露采纳,获得30
9秒前
9秒前
郑堰爻完成签到 ,获得积分10
9秒前
要减肥的书蝶完成签到,获得积分20
9秒前
10秒前
温暖小松鼠完成签到 ,获得积分10
10秒前
无花果应助遇鲸还潮采纳,获得10
10秒前
11秒前
啄木鸟完成签到,获得积分10
12秒前
随便发布了新的文献求助10
13秒前
星辰大海应助QQ采纳,获得10
13秒前
方赫然应助完美的海秋采纳,获得10
13秒前
充电宝应助baolongzhan采纳,获得10
13秒前
可靠晓山完成签到,获得积分20
14秒前
怪味基德完成签到,获得积分10
15秒前
yuan完成签到,获得积分10
15秒前
xuwan发布了新的文献求助10
17秒前
19秒前
20秒前
21秒前
WWW完成签到,获得积分10
22秒前
傲慢与偏见zz应助二两采纳,获得10
22秒前
天天快乐应助孔维艺采纳,获得10
23秒前
南华知识分子完成签到,获得积分10
24秒前
baolongzhan发布了新的文献求助10
25秒前
estate发布了新的文献求助10
26秒前
华仔应助2220895采纳,获得10
27秒前
mm发布了新的文献求助10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625