Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization

计算机科学 人工神经网络 人工智能 焊接 模式识别(心理学) 计算机视觉 复合材料 材料科学
作者
Rui Zhang,Donghao Liu,Qiaofeng Bai,Liuhu Fu,Jing Hu,Jinlong Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108045-108045 被引量:6
标识
DOI:10.1016/j.engappai.2024.108045
摘要

To effectively solve the problems of low detection accuracy caused by low quality image discriminative features of X-ray weld defects, lack of intuitive representation of the defect size of existing detection algorithms, and the strong subjectivity of the detection model artificial parameter adjustment, an X-ray weld defect detection and size measurement algorithm based on neural network self-optimization is proposed. Firstly, a high-performance detection model for X-ray weld defects is constructed, and the detection accuracy is comprehensively improved through a series of featured module designs with the capabilities of feature information enhancement and multi-scale information fusion. Secondly, a model optimization strategy is proposed to obtain the optimal hyperparameter components of the model through adaptive optimization to enhance the model's self-learning capability. Finally, by constructing the mapping relationship between the actual size of defects and the screen resolution, the size measurement algorithm of weld defects is designed, and the integrated technology of defect detection and size measurement is realised. Experimental results show that the proposed algorithm achieves good results even on a small-scale X-ray weld seam defect dataset. Compared to other classical and advanced detection models used in the experiments, [email protected] is improved by an average of 16.1% and [email protected]:.95 by an average of 10.7%. The image processing speed reaches up to 68 frames per second, and the error between the size calibration and manual actual measurement is less than 0.1 cm, which can meet the real-time detection requirements for weld seam defects in practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztl发布了新的文献求助10
2秒前
田様应助QDU采纳,获得10
2秒前
充电宝应助csj采纳,获得10
3秒前
利物浦996完成签到,获得积分10
5秒前
7秒前
12秒前
13秒前
畅快海云完成签到 ,获得积分10
16秒前
笨笨芯发布了新的文献求助30
18秒前
Yxy2021发布了新的文献求助10
19秒前
wys完成签到,获得积分10
20秒前
CodeCraft应助Ztx采纳,获得10
21秒前
22秒前
shaw完成签到,获得积分10
23秒前
23秒前
Lucas应助jjjdcjcj采纳,获得10
23秒前
领导范儿应助当代鲁迅采纳,获得10
23秒前
25秒前
Wang完成签到,获得积分10
25秒前
孙燕应助H28G采纳,获得10
26秒前
QYPANG发布了新的文献求助10
26秒前
wuy发布了新的文献求助10
29秒前
29秒前
Xin发布了新的文献求助10
30秒前
磊磊完成签到,获得积分10
30秒前
脑洞疼应助風声鶴唳采纳,获得10
32秒前
小布丁完成签到 ,获得积分10
34秒前
重重重飞完成签到 ,获得积分10
35秒前
jjjdcjcj发布了新的文献求助10
35秒前
37秒前
wuy完成签到,获得积分10
38秒前
39秒前
风趣过客发布了新的文献求助10
42秒前
QDU发布了新的文献求助10
42秒前
43秒前
5321发布了新的文献求助10
48秒前
彭于晏应助Xin采纳,获得10
48秒前
51秒前
打打应助相信柯学采纳,获得10
52秒前
阳光的紊完成签到,获得积分10
53秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652