清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization

计算机科学 人工神经网络 人工智能 焊接 模式识别(心理学) 计算机视觉 复合材料 材料科学
作者
Rui Zhang,Donghao Liu,Qiaofeng Bai,Liuhu Fu,Jing Hu,Jinlong Song
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108045-108045 被引量:32
标识
DOI:10.1016/j.engappai.2024.108045
摘要

To effectively solve the problems of low detection accuracy caused by low quality image discriminative features of X-ray weld defects, lack of intuitive representation of the defect size of existing detection algorithms, and the strong subjectivity of the detection model artificial parameter adjustment, an X-ray weld defect detection and size measurement algorithm based on neural network self-optimization is proposed. Firstly, a high-performance detection model for X-ray weld defects is constructed, and the detection accuracy is comprehensively improved through a series of featured module designs with the capabilities of feature information enhancement and multi-scale information fusion. Secondly, a model optimization strategy is proposed to obtain the optimal hyperparameter components of the model through adaptive optimization to enhance the model's self-learning capability. Finally, by constructing the mapping relationship between the actual size of defects and the screen resolution, the size measurement algorithm of weld defects is designed, and the integrated technology of defect detection and size measurement is realised. Experimental results show that the proposed algorithm achieves good results even on a small-scale X-ray weld seam defect dataset. Compared to other classical and advanced detection models used in the experiments, [email protected] is improved by an average of 16.1% and [email protected]:.95 by an average of 10.7%. The image processing speed reaches up to 68 frames per second, and the error between the size calibration and manual actual measurement is less than 0.1 cm, which can meet the real-time detection requirements for weld seam defects in practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的鱼完成签到 ,获得积分10
30秒前
tt完成签到,获得积分10
32秒前
cy0824完成签到 ,获得积分10
42秒前
淡然的莫茗完成签到 ,获得积分10
51秒前
忧郁的火车完成签到,获得积分10
2分钟前
不想看文献完成签到 ,获得积分10
3分钟前
zxx完成签到 ,获得积分0
3分钟前
3分钟前
4分钟前
Lliu发布了新的文献求助10
4分钟前
zpli完成签到 ,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
qqq完成签到,获得积分10
5分钟前
6分钟前
1234发布了新的文献求助10
6分钟前
1234完成签到,获得积分20
6分钟前
Lliu完成签到,获得积分10
6分钟前
五木完成签到,获得积分10
7分钟前
在水一方应助稳重的泽洋采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得30
7分钟前
科目三应助Carl采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
Carl发布了新的文献求助10
8分钟前
所所应助稳重的泽洋采纳,获得10
9分钟前
meeteryu完成签到,获得积分10
9分钟前
CHEN完成签到 ,获得积分0
10分钟前
10分钟前
10分钟前
稳重的泽洋完成签到,获得积分10
11分钟前
在逃板砖完成签到 ,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Timelapse应助缥缈以珊采纳,获得20
11分钟前
12分钟前
午后狂睡完成签到 ,获得积分10
12分钟前
Jasper应助大哥我猪呢采纳,获得10
12分钟前
12分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565086
求助须知:如何正确求助?哪些是违规求助? 4649803
关于积分的说明 14689300
捐赠科研通 4591729
什么是DOI,文献DOI怎么找? 2519358
邀请新用户注册赠送积分活动 1491917
关于科研通互助平台的介绍 1463056